\(\ove...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2020

\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)

15 tháng 5 2017

a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
A B C B' C' A'
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.

7 tháng 10 2019

\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}}{2}+\frac{\overrightarrow{AC}}{2}=\overrightarrow{AM}+\overrightarrow{AP}\)

\(\overrightarrow{AN}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\overrightarrow{BP}=\frac{\overrightarrow{BA}+\overrightarrow{BC}}{2}\)

\(\overrightarrow{CM}=\frac{\overrightarrow{CB}+\overrightarrow{CA}}{2}\)

\(\Rightarrow\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\overrightarrow{0}\)

NV
30 tháng 9 2019

Các kí hiệu bên dưới đều là vecto chứ ko phải đoạn thẳng:

a/ \(BB'+CC'+BA+CA=2AA'+BA+CA\)

\(=2\left(AB+BA'\right)+BA+CA=2AB+2BA'+BA+CA\)

\(=AB+CA+2BA'=CB+2BA'=CA'+A'B+2BA'\)

\(=BA'+CA'\)

b/ \(AA'+BB'+CC'=AB+BA'+BC+CB'+CA+AC'\)

\(=AB+BC+CA+BA'+CB'+AC'\)

\(=AC+CA+BA'+CB'+AC'\)

\(=BA'+CB'+AC'\)

13 tháng 7 2018

a) Vì M, N, P lần lượt là trung điểm của BC, CA, AB

Nên AM, BN, CP lần lượt là đường trung tuyến của BC, CA, AB.

\(\Rightarrow\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

a)

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{BC}+\overrightarrow{CN}+\overrightarrow{CA}+\overrightarrow{AP}\)

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BA}+\overrightarrow{AN}+\overrightarrow{CB}+\overrightarrow{BP}\)

\(\Rightarrow 2(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP})=(\overrightarrow{AB}+\overrightarrow{BA})+(\overrightarrow{BM}+\overrightarrow{CM})+(\overrightarrow{BC}+\overrightarrow{CB})+(\overrightarrow{CA}+\overrightarrow{AC})+(\overrightarrow{AP}+\overrightarrow{BP})+(\overrightarrow{CN}+\overrightarrow{AN})\)

\(=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\) (do các cặp tổng đều là vecto đối nhau)

\(\Rightarrow \overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=0\)

(đpcm)

b) Theo phần a:
\(\overrightarrow{AM}=-(\overrightarrow{BN}+\overrightarrow{CP})=-\overrightarrow{BN}+(-\overrightarrow{CP})\)

\(=\overrightarrow{NB}+\overrightarrow{PC}\) (đpcm)

2 tháng 10 2016

Vectơ bằng vectơ B'C' là: vectơ BA' và vectơ A'C
Vectơ bằng vectơ A'C' là: vectơ CB' và vectơ B'A