K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

Em tham khảo câu a, b tại link : Câu hỏi của Ngọc Giang - Toán lớp 7 - Học toán với OnlineMath

Câu c. Gọi H là giao điểm của BD và AC 

Xét tam giác ABH và tam  giác EBH có: AB = EB ( gt ); ^BAH = ^EBH ; BH chung 

=> Tam giác ABH = Tam giác EBH 

=> ^AHB = ^EHB mà ^AHB + ^EHB = 180\(^o\)

=> ^AHB = ^EHB = 90\(^o\)

=> BH vuông AE => BD vuông AE

30 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

Vậy: \(\widehat{BED}=90^0\)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE(đpcm)

30 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)

mà ˆBAD=900BAD^=900(ΔABC vuông tại A)

nên ˆBED=900BED^=900

Vậy: ˆBED=900BED^=900

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE(đpcm)

22 tháng 12 2021

Answer:

Phần c) thì nhờ các cao nhân khác thoii.

C E D A B 1 2

a) Ta xét tam giác ABD và tam giác EBD:

AB = EB (gt)

BD cạnh chung

\(\widehat{B_1}=\widehat{B_2}\)

Vậy tam giác ABD = tam giác EBD (c.g.c)

\(\Rightarrow DE=DA\)

b) Theo phần a), tam giác ABD = tam giác EBD

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)

29 tháng 7 2017

ahihi Dồ     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

11 tháng 1 2022

a) Xét tam giác ABD và tam giác EBD:

+ AB = EB (gt).

+ BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).

\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).

b) Tam giác ABD = Tam giác EBD (cmt).

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).

\(\Rightarrow\) \(\widehat{BED}=90^o\)

c) Xét tam giác ABE: BA = BE (gt).

\(\Rightarrow\) Tam giác ABE cân tại B.

Mà BD là phân giác (gt).

\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).

\(\Rightarrow\) \(BD\perp AE.\)

24 tháng 3 2022

xl mình ko làm đc

24 tháng 3 2022

`Answer:`

undefined

a. Vì `\triangleABC` vuông tại `A` nên theo định lí Pytago, ta có:

\(AB^2=BC^2-AC^2\Leftrightarrow AB^2=13^2-12^2\Leftrightarrow AC^2=169-144=25\Leftrightarrow AC=5cm\)

b. Xét `\triangleABD` và `\triangleEBD:`

`BD` chung

`BA=BE`

`\hat{ABD}=\hat{EBD}`

`=>\triangleABD=\triangleEBD(c.g.c)`

c. Theo phần b. `\triangleABD=\triangleEBD`

`=>\hat{BAD}=\hat{BED}=90^o`

`=>DE⊥BC`

d. Xét `\triangleADF` và `triangleEDC:`

`AD=DE`

`\hat{DAF}=\hat{DEC}=90^o`

`\hat{ADF}=\hat{EDC}`

`=>\triangleADF=\triangleEDC(g.c.g)`

`=>AF=BC`