K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

\(\cos\widehat{B}=0.6\)

\(\sin\widehat{B}=0.8\)

\(\tan\widehat{B}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\dfrac{3}{4}\)

ΔABC vuông tại A mà BC<AB là đề sai rồi bạn

7 tháng 9 2023

AB=1,5 ạ, mình ghi thiếu, bạn thông cảm với

 

3 tháng 9 2020

\(\cos C=\sqrt{1-\sin^2C}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}\)

\(\Rightarrow\cos C=\frac{4}{5}\)

\(\Rightarrow\tan C=\frac{\sin C}{\cos C}=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)và \(\cot C=\frac{4}{3}\)

Ta có: \(\widehat{C};\widehat{B}\)là hai góc phụ nhau

\(\Rightarrow\hept{\begin{cases}\sin C=\cos B\\\cos C=\sin B\end{cases};\hept{\begin{cases}\tan C=\cot B\\\cot C=\tan B\end{cases}}}\)

\(\Rightarrow\sin B=\frac{4}{5};\cos B=\frac{3}{5};\tan B=\frac{4}{3};\cot B=\frac{3}{4}\)

3 tháng 9 2020

Ta có: \(\sin C=\frac{AB}{BC}=\frac{3}{5}\) 

=> \(\frac{AB}{3}=\frac{BC}{5}=k\left(k\inℕ\right)\)

=> \(\hept{\begin{cases}AB=3k\\BC=5k\end{cases}}\)

=> \(AC=\sqrt{\left(5k\right)^2-\left(3k\right)^2}=\sqrt{16k^2}=4k\)

Đến đây thì xong rồi:))

\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\) ; \(\cos B=\frac{AB}{BC}=\frac{3k}{5k}=\frac{3}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{4k}{3k}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3k}{4k}=\frac{3}{4}\)

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

20 tháng 11 2023

Xét ΔABC vuông tại A có

\(sinB=sin56\simeq0,83\)

\(cosB=cos56\simeq0,56\)

\(tanB=tan56\simeq1,48\)

\(cotB=cot56\simeq0,67\)

Xét ΔABC vuông tại A có

\(cosC=sinB\simeq0,83\)

\(sinC=cosB\simeq-0,56\)

\(cotC=tanB=tan56\simeq1,48\)

\(tanC=cotB\simeq0,67\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$

$\sin B = \frac{AC}{BC}=\frac{4}{5}$

$\tan B = \frac{AC}{AB}=\frac{4}{3}$

$\cot B = \frac{AB}{AC}=\frac{3}{4}$

b.

$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm) 

$\sin C = \frac{AB}{BC}=\frac{5}{13}$

$\cos C=\frac{AC}{BC}=\frac{12}{13}$

$\tan C=\frac{AB}{AC}=\frac{5}{12}$

$\cot C=\frac{AC}{AB}=\frac{12}{5}$