\(AM=\frac{1}{2}BM\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

Từ A dựng đường cao AH, M dựng đường cao MD ( H, D thuộc BC ) 

\(\left(S_{MAB};S_{MBC};S_{MAC}\right)\rightarrow\left(S_1;S_2;S_3\right)\)

\(\Delta HAA_1\) có \(AH//MD\left(\perp BC\right)\) áp dụng Ta-let \(\Rightarrow\)\(\frac{AA_1}{MA_1}=\frac{AH}{MD}=\frac{\frac{1}{2}AH.BC}{\frac{1}{2}MD.BC}=\frac{S_{ABC}}{S_2}\)

\(\Rightarrow\)\(\frac{AA_1}{MA_1}-1=\frac{MA}{MA_1}=\frac{S_{ABC}}{S_2}-1=\frac{S_1+S_3}{S_2}\)

Tương tự( dựng các đường cao hạ từ B, M và C, M ) ta cũng có: \(\frac{MB}{MB_1}=\frac{S_1+S_2}{S_3};\frac{MC}{MC_3}=\frac{S_2+S_3}{S_1}\)

Do đó: \(P=\frac{MA}{MA_1}.\frac{MB}{MB_1}.\frac{MC}{MC_1}=\frac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1S_2S_3}\)

\(\ge\frac{2\sqrt{S_1S_2}.2\sqrt{S_2S_3}.2\sqrt{S_3S_1}}{S_1S_2S_3}=\frac{8\sqrt{\left(S_1S_2S_3\right)^2}}{S_1S_2S_3}=8\)

Dấu "=" xảy ra \(\Leftrightarrow\) tam giác ABC là tam giác đều và có 3 đường trung trực đồng quy tại M

28 tháng 7 2019

A B M C O O 1 2 O I E D N

a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1= ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB

Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).

b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI

Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB 

=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).

c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)

=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC

Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)

Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)

Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).

8 tháng 8 2016

từ 0 hạ các dduownmgf vuông góc
sử dụng ta let + S tam giác để tính thôi bạn