\(\sqrt{3}\) , M là trung điểm BC. Tính độ dài các vecto<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 11 2018

\(\overrightarrow{AD}=2\overrightarrow{DB}\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\) ; \(\overrightarrow{CE}=3\overrightarrow{EA}\Rightarrow\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Lại có M là trung điểm DE

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{AI}=\overrightarrow{AI}-\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

17 tháng 11 2018

cảm ơn bạn <3

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a) Vì $M$ là trung điểm của $EF$ nên \(\overrightarrow {ME}+\overrightarrow{MF}=0\), tương tự \(\overrightarrow{NB}+\overrightarrow{NC}=0\)

Từ đkđb ta cũng có \(AE=\frac{1}{3}AB;AF=\frac{3}{5}AC\)

Ý 1:

\(\left\{\begin{matrix} \overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{EM}\\ \overrightarrow{AM}=\overrightarrow{AF}+\overrightarrow{FM}\end{matrix}\right. \)

\(\Rightarrow 2\overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{AF}-(\overrightarrow{ME}+\overrightarrow{MF})=\overrightarrow{AE}+\overrightarrow{AF}\)

\(=\frac{1}{3}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}\)\(\Leftrightarrow \overrightarrow{AM}=\frac{1}{6}\overrightarrow{AB}+\frac{3}{10}\overrightarrow{AC}\)

Ý 2:

\(\left\{\begin{matrix} \overrightarrow{MN}=\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{BN}\\ \overrightarrow{MN}=\overrightarrow{MF}+\overrightarrow{FC}+\overrightarrow{CN}\end{matrix}\right.\Rightarrow 2\overrightarrow{MN}=(\overrightarrow{ME}+\overrightarrow{MF})+\overrightarrow{EB}+\overrightarrow{FC}-(\overrightarrow{NB}+\overrightarrow{NC})\)

\(\Leftrightarrow 2\overrightarrow{MN}=\overrightarrow{EB}+\overrightarrow{FC}=\frac{2}{3}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\Leftrightarrow \overrightarrow{MN}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}\)

b)

Theo đkđb ta có: \(\overrightarrow{BG}=3\overrightarrow{CG}\)

\(\left\{\begin{matrix} \overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\\ \overrightarrow{AG}=\overrightarrow{AC}+\overrightarrow{CG}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\\ 3\overrightarrow{AG}=3\overrightarrow{AC}+3\overrightarrow{CG}\end{matrix}\right.\)

\(\Rightarrow 2\overrightarrow{AG}=3\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow \overrightarrow{AG}=\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

Lại có:

\(\overrightarrow{EG}=\overrightarrow{EA}+\overrightarrow{AG}=\frac{-1}{3}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}=\frac{3}{2}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)

\(\overrightarrow{FG}=\overrightarrow{FA}+\overrightarrow{AG}=\frac{-3}{5}\overrightarrow{AC}+\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}=\frac{9}{10}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

c) Từ phần b ta thấy \(\frac{3}{5}\overrightarrow{EG}=\overrightarrow{FG}\Rightarrow E,G,F\) thẳng hàng.

17 tháng 5 2017

A B C K I
a)
\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IB}=\overrightarrow{AI}+\dfrac{1}{2}\left(\overrightarrow{IA}+\overrightarrow{AB}\right)\)
\(=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IA}+\dfrac{1}{2}\overrightarrow{AB}\)\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}\).
b) Theo câu a:
\(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}.\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\).

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^ Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\) và \(\overrightarrow{GC}\) A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\) B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\) C....
Đọc tiếp

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^

Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\)\(\overrightarrow{GC}\)

A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\)

B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

C. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) - \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

D. \(\overrightarrow{AM}\) = \(\dfrac{2}{3}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

Câu 2: Cho 4 điểm A, B, C, D. Tính \(\overrightarrow{u}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{DC}\) + \(\overrightarrow{BD}\) + \(\overrightarrow{CA}\)

A. \(\dfrac{2}{3}\) \(\overrightarrow{AC}\) B. \(\overrightarrow{AC}\) C. \(\overrightarrow{0}\) D. 2 \(\overrightarrow{AC}\)

Câu 3: Khẳng định nào sau đây là đúng :

A. Hai vecto \(\overrightarrow{a}\) , k\(\overrightarrow{a}\) luôn cùng hướng

B. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn cùng phương

C. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) bằng độ dài

D. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn ngược hướng

Câu 4: Cho k ≠ 0, \(\overrightarrow{a}\)\(\overrightarrow{0}\) . k \(\overrightarrow{a}\)\(\overrightarrow{a}\) cùng hướng khi :

A. k tùy ý B. \(\left|k\right|\) lớn hơn 0 C. k < 0 D. k lớn hơn 0

Câu 5: Cho G là trọng tâm Δ ABC, O là điểm bất kỳ thì :

A. \(\overrightarrow{AG}\) = \(\dfrac{\overrightarrow{OB}+\overrightarrow{OC}}{2}\) B. \(\overrightarrow{AG}\)​ = \(\dfrac{\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AC}}{3}\)

C. \(\overrightarrow{AG}\) = \(\dfrac{2}{3}\) ( \(\overrightarrow{AB}\) + \(\overrightarrow{AC}\) ) D. \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) + \(\overrightarrow{OC}\) = 3 \(\overrightarrow{OG}\)

3
AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 1:

Theo tính chất trọng tâm và đường trung tuyến, ta thấy \(\overrightarrow {AM}; \overrightarrow{GM}\) là 2 vecto cùng phương, cùng hướng và \(AM=3GM\)

\(\Rightarrow \overrightarrow{AM}=3\overrightarrow{GM}\)

\(=\frac{3}{2}(\overrightarrow{GM}+\overrightarrow{GM})\) \(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM})\)

\(=\frac{3}{2}[(\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{BM}+\overrightarrow{CM})]\)

\(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{GC})\) (vecto \(\overrightarrow{BM}; \overrightarrow{CM}\) là 2 vecto đối nhau nên tổng bằng vecto $0$)

Đáp án B

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

\(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}\)

\(=(\overrightarrow{AB}+\overrightarrow{BD})+(\overrightarrow{DC}+\overrightarrow{CA})=\overrightarrow{AD}+\overrightarrow{DA}\)

\(=\overrightarrow{0}\) (tổng của 2 vecto đối nhau)

Đáp án C

Câu 3:

Bạn nhớ rằng \(\overrightarrow{a}; k\overrightarrow{a}(k\in\mathbb{R})\) luôn là 2 vecto cùng phương (tính chất vecto). Nhưng nó mới chỉ là cùng phương thôi. Muốn cùng phương +cùng hướng thì \(k>0\) ; muốn cùng phương + ngược hướng thì \(k< 0\). Nói chung là phụ thuộc vào tính chất của $k$

Câu C thì hiển nhiên sai.

Nên đáp án B đúng

8 tháng 11 2018

1. C

2. C

3. Sửa đề:

\(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{BE}\Leftrightarrow\overrightarrow{BD}-\overrightarrow{BE}=\overrightarrow{FD}-\overrightarrow{FE}\Leftrightarrow\overrightarrow{ED}=\overrightarrow{ED}\) (luôn đúng)