Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MNDE là hình bình hành
b) Điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật
c) DE = MN
Chứng minh:
Ta có G là trọng tâm của ( ABC (gt)
Mặt khác: MB = MG, NG = NC (gt)
=>
Tứ giác MNDE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành
b)
Tứ giác MNDE là hình chữ nhật khi và chỉ khi MD = NE, tức là BD = CE khi đó ( ABC cân tại A
c)
Xét ABC có là đường trung bình của ( ABC
=> DE = BC (1)( tính chất đường trung bình)
Xét ( GBC có MN là đường trung bình của ( GBC
=> MN = BC (2) (tính chất đường trung bình)
Từ (1) và 2 (2) ta có DE = MN
a: Xét ΔABD và ΔACE có
\(\widehat{ABD}=\widehat{ACE}\)
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
b: Xét ΔEBD có \(\widehat{EBD}=\widehat{EDB}\left(=\widehat{DBC}\right)\)
nên ΔEBD cân tại E
Suy ra: ED=EB
mà EB=DC
nên BE=ED=DC
BN TỰ VẼ HÌNH NHA dương minh tuấn !!!!!!
a. BM // AC \(\Rightarrow\) \(\frac{AD}{DB}=\frac{AC}{MB}\)
\(\Rightarrow\frac{AD}{AD+DB}=\frac{AC}{AC+MB}\)
\(\Rightarrow\frac{AD}{AB}=\frac{AC}{AC+AB}\left(1\right)\)
\(CN\) // \(AB\Rightarrow\frac{AE}{EC}=\frac{AB}{CN}\Rightarrow\frac{AE}{AE+EC}=\frac{AB}{AB+CN}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AB}{AB+AC}\Rightarrow\frac{AE}{AB}=\frac{AC}{AC+AB}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{AD}{AB}=\frac{AE}{AB}\Rightarrow AD=AE\)
vì \(\widehat{BAC}=60^0\)
nên \(\Delta AED\) là tam giác đều
b. theo hướng chứng minh trên :
\(\frac{AD}{DB}=\frac{AC}{MB}=\frac{AC}{AB}\left(3\right)\)
\(\frac{AE}{EC}=\frac{AB}{CN}=\frac{AB}{AC}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{AD}{DB}=\frac{EC}{AE}\Rightarrow AD^2=DB.EC=4.9\)
\(AD=6\Rightarrow DE=6\)
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân