K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 12 2021
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔBAC cân tại A)
ˆBADBAD^ chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
Suy ra: AD=AE(Hai cạnh tương ứng)
hay A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(cmt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBH vuông tại E và ΔDCH vuông tại D có
EB=DC(cmt)
ˆEBH=ˆDCHEBH^=DCH^(ΔABD=ΔACE)
Do đó: ΔEBH=ΔDCH(Cạnh góc vuông-góc nhọn kề)
Suy ra: HE=HD(Hai cạnh tương ứng)
hay H nằm trên đường trung trực của ED(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AH là đường trung trực của ED
hay AH⊥⊥ED(đpcm)
A B C M N E D
a,Xét tam giác BDC:
Ta có: \(\hept{\begin{cases}gócD=90^0\\BM=MC\end{cases}\Rightarrow DM=\frac{1}{2}BC}\) (1)
Xét tam giác BEC:
Ta có: \(\hept{\begin{cases}gócE=90^0\\BM=MC\end{cases}\Rightarrow EM=\frac{1}{2}BC}\) (2)
Từ (1) và (2): \(\Rightarrow EM=MD=\frac{1}{2}BC\)
Suy ra: tam giác EMD là tam giác cân.
Lại có: N là trung điểm của tam giác can EMD.
Hay: N là đường cao của tam giác EMD
Vậy MN vuông góc với ED
b,Bó tay