Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác AHC vuông góc C = 50 * => góc HAC = 40 *
tam giác ADK vuông góc HAC = 40* => ADK = 50*
=> HDK = 130 * ( hai góc kề bù )
b) DA = DB => tam giác ADB cân tại D => góc ABD = góc DAB
có góc DBA + góc BAK = 90*
<=> gócDAB + góc BAK = 90*
<=> góc DAB + góc A + góc DAK = 90*
<=> 2 góc DAB + góc DAK = 90*
<=> 2 góc DAB + 40 * = 90*
<=> góc DAB = 25 *
=> góc BAC = 65*
=> góc ABC = 180* - góc BAC - góc BCA = 180* - 65* - 50* = 65*
=> góc ABC = góc BAC
=. tam giác ABC cân tại C
a) BE là phân giác ABC => ABE = CBE
AE //BC => AEB = CBE (so le trong)
=> ABE = AEB
=> tam giác BAE cân tại A ( đpcm)
b) Có: ABE = CBE = ABC : 2 = 50o : 2 = 25o
Tam giác BAE cân tại A có: BAE = 180o - 2.ABE
= 180o - 2.25o = 130o
a) BE là p/g góc ABC => ABE=CBE (1)
AE//BC => AEB=CBE (so le trong) (2)
Từ (1) và (2) => ABE=AEB
=> Tam giác AEB cân tại A (đpcm)
b) Có: ABE=CBE=ABC/2=50o/2
=> 2.ABE=2.CBE=ABC=50o
Tam giác ABE cân tại A có: BAE=180o-2.ABE=180o-50o=130o
a) BE là p/g góc ABC => ABE=CBE (1)
AE//BC => AEB=CBE (so le trong) (2)
Từ (1) và (2) => ABE=AEB
=> Tam giác AEB cân tại A (đpcm)
b) Có: ABE=CBE=ABC/2=50
o/2
=> 2.ABE=2.CBE=ABC=50
o
Tam giác ABE cân tại A có: BAE=180
o-2.ABE=180
o-50
o=130
chúc bn hok tốt @_@
Xét tam giác ABC và tam giác DCB có:
góc B1= góc C2 ( vì AB//CD)
BC: chung
Góc C1= góc B2 ( vì AC//BD)
=> tam giác ABC= tam giác DCB (g.c.g)
=> AB=CD
ĐỀ SAI
nếu là phân góc góc ngoài đỉnh C thì lm sao mà cắt AB tại E
=> đề đúng pải là phân giác góc C
Đề mình chép đúng đấy bạn, không sai đâu! Bạn giải cho mình được không?
A B E C
a) Vì BE là tia phân giác \(\widehat{B}\)
=> \(\widehat{ABE}=\widehat{CBE}\) (1)
mà AE // BC
=> \(\widehat{AEB}=\widehat{CBE}\left(soletrong\right)\) (2)
(1); (2) => \(\widehat{ABE}=\widehat{AEB}\)
=> \(\Delta AEBcân\) tại A
b) Vì BE là tia phân giác \(\widehat{B}\)
=> \(\widehat{ABE}=\widehat{AEB}=\dfrac{\widehat{ABC}}{2}=\dfrac{50^0}{2}=25^0\)
\(\Delta ABEcó:\widehat{A}+\widehat{B}+\widehat{E}=180^0\) (định lí)
hay \(\widehat{A}+25^0+25^0=180^0\)
\(\widehat{A}+50^0=180^0\)
\(\widehat{A}=180^0-50^0\)
\(\widehat{A}=130^0\)
hay \(\widehat{BAE}=130^0\)