Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hbh
=>AE=BD
b: Xét ΔABC có góc ACB<góc ABC
nên AB<AC
Xét ΔABC có
AB<AC
BD,CD lần lượt là hình chiếu của AB,AC trên BC
=>BD<CD
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hbh
=>AF//DC
=>AF//BC
mà AE//BC
nên F,A,E thẳng hàng
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hìnhbình hành
=>AE=BD
b: góc ACB<góc ABC
=>AB<AC
=>DB<DC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
=>F,A,E thẳng hàng
Moọe,làm xong tự nhiên olm tải lại tap.
Vẽ giùm cái hình (hồi nãy vẽ hình đẹp lắm mà giờ bị mất->lười vẽ)
a)Xét tam giác DMB và AME có:
\(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AME}=\widehat{DMB}\left(đđ\right)\\BM=EM\left(gt\right)\end{cases}}\Rightarrow\Delta DMB=\Delta AME\Rightarrow AE=BD\)
b)Từ \(\Delta DMB=\Delta AME\Rightarrow\widehat{MDB}=\widehat{MAE}=90^o\Rightarrow AE//BD\) (so le trong) (1)
Đến đây chứng minh FA // DC bằng cách chứng minh tam giác AMF = tam giác DMC để suy ra góc CMD = góc AMF = 90o (so le trong)
Từ đó suy ra E;A;F thẳng hàng.
a: Xét tứ giác AEDB có
M là trung điểm chung của AD và EB
=>AEDB là hình bình hành
=>AE=DB và AE//DB
=>AE//BC
b: BD=AE
mà AE<AC
nên BD<AC
c: Xét tứ giác AFDC có
M là trung điểm chung của AD và FC
=>AFDC là hình bình hành
=>AF//DC
mà AE//DC
nên A,E,F thẳng hàng
Cho mik hỏi chút với ạ, làm sao bạn chứng minh được AE<AC ạ?
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em xem bài ở link này nhé! Câu b
a: Xét ΔMAE và ΔMDB có
MA=MD
\(\widehat{AME}=\widehat{DMB}\)(hai góc đối đỉnh)
ME=MB
Do đó: ΔMAE=ΔMDB
=>AE=BD
b: Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}\)
mà AB,AC lần lượt là cạnh đối diện của các góc ACB,ABC
nên AB<AC
Xét ΔABC có AB<AC
mà BD,CD lần lượt là hình chiếu của AB,AC trên BC
nên BD<CD
c: Xét ΔMAF và ΔMDC có
MA=MD
\(\widehat{AMF}=\widehat{DMC}\)(hai góc đối đỉnh)
MF=MC
Do đó: ΔMAF=ΔMDC
=>\(\widehat{MAF}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//DC
=>AF//BC
Ta có: ΔMAE=ΔMDB
=>\(\widehat{MAE}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BD
=>AE//BC
Ta có: AE//BC
AF//BC
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng