Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K 1 2 3 1 2
Ta có : \(\Delta AHC\) có \(\widehat{H}=90^o\) nên \(\widehat{ACH}+\widehat{A_3}=90^o\) (1)
Ta lại có :
\(\widehat{BAH}+\widehat{A_3}=\widehat{BAC}=90^o\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{ACH}=\widehat{BAH}\)
Ta có :
\(\widehat{C_1}=\frac{1}{2}\widehat{ACH}\)nên \(\widehat{C}_1=\widehat{A_1}\)
Do đó \(\widehat{A_2}+\widehat{A_3}+\widehat{C}_1=\widehat{A}_2+\widehat{A}_3+\widehat{A}_1=90^o\)
Tam giác AKC có : \(\widehat{A}_2+\widehat{A_3}+\widehat{C}_1=90^o\) . Vậy \(AK\perp CK\)
Chúc bạn học tốt !!!
mk không bt ý kiến của mk đúng k nhưng bạn thử
Xét 2 tam giác thử đi
gọi tia AI cắt BC tại M
ta có \(\widehat{IAC}=\widehat{IAH}+\widehat{HAC}=\widehat{\frac{BAH}{2}}+\widehat{HAC}\)
và \(\widehat{AMC}=\widehat{B}+\widehat{MAH}=\widehat{B}+\widehat{\frac{BAH}{2}}\)
mà \(\widehat{B}=\widehat{HAC}\)(cùng phụ với \(\widehat{BAH}\)
từ 3 điều trên => tam giác ACN cân tại C
=> đường phân giác CI đông thời là đường cao (ĐPCM)
Gọi phân giác C cắt AH tại M
Ta có: góc B + góc C = 90*
Ta có: góc B + góc BAH = 90*
=> góc BAH = góc C
Theo giả thiết, AI là phân giác của góc BAH
nên góc BAI = góc IAH
Theo giả thiết, CI là phân giác của góc C
nên góc HCI = góc ICA
Vì góc BAH = góc C nên góc IAH = góc HCI (1)
Ta có: góc IMA = góc HMC (đối đỉnh) (2)
Ta có: tổng 3 góc của 1 tam giác bằng 180* (3)
Từ (1),(2),(3) => góc AIM = góc MHC = 90*
Vậy góc AIC = 90*
KA đâu có pphair là tia phân giác của BAC đâu bạn ????