Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Kham khảo
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
vào thống kê mk , thấy chữ màu xanh trog câu tl này ấn zô đó sẽ ra
Hc tốt
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Xét ΔIDE có \(\widehat{IDE}=\widehat{IED}\)
nên ΔIDE cân tại I
hay ID=IE
Lời giải:
Từ $I$ kẻ $IK, IL$ lần lượt vuông góc với $AB,AC$
Vì $I$ là giao điểm của hai tia phân giác $AD$ và $CE$ nên đồng thời $I$ cũng nằm trên tia phân giác của góc $ABC$
Do đó khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$
\(\Leftrightarrow IK=IL\)
Lại có:
\(\angle IEK=\angle CEA=180^0-\angle EAC-\angle ACE=180^0-\angle BAC-\frac{\angle ACB}{2}\)
\(\angle IDL=\angle ADB=\angle DAC+\angle DCA=\frac{\angle BAC}{2}+\angle ACB\)
\(\Rightarrow \angle IEK-\angle IDL=180^0-\frac{3}{2}(\angle BAC+\angle ACB)\)
\(=180^0-\frac{3}{2}(180^0-60^0)=0\)
\(\Rightarrow \angle IEK=\angle IDL\)
Xét tam giác $IEK$ và tam giác $IDL$ có:
\(\left\{\begin{matrix} \angle IEK=\angle IDL\\ \angle IKE=\angle ILD=90^0\\ \end{matrix}\right.\Rightarrow \triangle IEK\sim \triangle IDL\)
\(\Rightarrow \frac{IE}{ID}=\frac{IK}{IL}=1\Rightarrow IE=ID\)
A B C I D E 1 1
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( tổng 3 góc của \(\Delta ABC\) )
\(\Rightarrow\widehat{B}+\widehat{C}=120^o\) ( do \(\widehat{A}=60^o\) )
\(\Rightarrow\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=\frac{1}{2}120^o\)
\(\Rightarrow\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}=60^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=60^o\)
Xét \(\Delta BIC\) có: \(\widehat{BIC}+\widehat{B_1}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{BIC}+60^o=180^o\)
\(\Rightarrow\widehat{BIC}=120^o\)
Vậy \(\widehat{BIC}=120^o\)
đây có phải là bài thi vio toán bằng tiếng anh cấp trg ko bn