Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuong góc với BC ( H thuộc BC ) Biết HI = 2cm HC= 3cm. Tính Chu vi tam giác ABC
a, tam giac BAD co AH vua la dung cao vua la dg trung truc nen do la tam giac can
C B A H D E K
a,Xét t/g vuông AHD và t/g vuông AHB có :
AH chung
HD = HB (gt)
=> t/g AHD = t/g AHB ( ch-cgv )
=> AB = AD
=> t/g BAD cân tại A
b, Để CD là tia p/g của ACE
Thì sau 1 vài bước phân tích ta có
DCE^ + HAB^ = DCA^ + HBA^
Vì cần cm ACE^ = DCA^
Nên ta có thêm gt từ trên trời rơi xuống là : HAB^ = HBA^
=> HA = HB
Do gt đưa ra ko tm nên vô lí :)) làm bừa đấy ạ
c, Theo câu b ta có : ECD^ = ACD^
Xét t/g vuông CHK và t/g vuông CHA có :
CH chung
ECD^ = ACD^ ( cm câu a )
=> t/g CHK = t/g CHA ( cgv-gn )
Câu d thì chịu r :D
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :BD = CEtam giác BHC cânAH lsf dduwognf trung trực của BCTrên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
Cho tam giác ABC cân tại A( góc A< 90độ) Kẻ BD vuong góc với AC ( D thuộc AC) CE vuoogn goác với AB ( E thuộc AB ) BD và CE cắt nhau tại H. Chứng minh :
- BD = CE
- tam giác BHC cân
- AH lsf dduwognf trung trực của BC
- Trên tia BD lấy K sao cho D là trung điểm của BK. So sánh goác ECB và DKC
1. xét tam giác BAH và tam giác HAD có:
góc BHA = góc AHD = 900 (gt) ; HB = HD (gt)
AH chung
=> tam giác BAH = tam giác HAD (c.g.c)
=> AB = AD (cạnh tương ứng)
=> tam giác BAD cân tại A
2. hình như đề sai hay sao ý !!!!
t thấy trong đề ghi vậy mak