Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I K 1 2 1 2 x y
a) Góc BIC = 180o - (góc IBC + ICB) (1)
+) Ta có có IBC = góc ABC/2 (vì BI là p.g của góc ABC); góc ICB = ACB/2 (vì CI là p/g của góc ACB)
=> góc IBC + ICB = góc (ABC + ACB)/2 = (180o - góc BAC)/2
(1) => góc BIC = 90o + (góc BAC/2)
b) góc BKC = 180o - (góc B2 + C2)
+) góc B2 = B1 = góc ABx/ 2= (180o - ABC)/2
+) góc C2 = góc C1 = góc ACy/2 = (180o - ACB)/2
=> góc B2 + C2 = (360o - ABC - ACB)/2 = (360o - 180o + BAC)/2 = (180o + BAC)/2
(2) => góc BKC = 90o - (BAC/2)
a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)
Mà \(\widehat{BAC}=60\)
Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)
Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)và \(\widehat{ACB}\)
Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)
Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)
Suy ra 60 + \(\widehat{BIC}\)=180
Suy ra \(\widehat{BIC}\)= 180-60=120
a) Ta có: NMP + MNP + MPN= 180o
MNP+MPN=180o - NMP=180o-80o =100o
và NIP + MNP/2 + MPN/2 = 180o
NIP + \(\frac{MNP+MPN}{2}\)=180o
NIP + 100o/2 = 180o
NIP + 50o = 180o
NIP = 180o-50o= 130o
b) ko bt
c) I cách đều 3 cạnh của tam giác MNP vì I là giao điểm của 3 đường phân giác của tam giác
Ta có :
góc B = tam giác ABC - góc A - góc C = 180 - 45 - 35 = 110
tia DB là tia phân giác của góc B => góc ABD = 110 : 2 = 55
ta có : tam giác ADB = 180 = A + B + C = 45 + 55 + D
=> góc ADB = 180 - 45 -55 = 80
ta có : góc ADC là góc bẹt => ADC = 180 = ADB + CDB = 80 + CDB
=> góc CDB = 180 - 80 = 100
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^O\) ( định lí tổng 3 góc trong 1 tam giác )
hay \(45^o+\widehat{B}+35^o=180^o\)
\(\Rightarrow\widehat{B}=180^o-35^o-45^o=100^o\)
Vì \(\Delta ABC\) có BD là tia phân giác nên
\(\widehat{ABD}=\widehat{DBC}=\dfrac{1}{2}\widehat{ABC}\) \(=\dfrac{1}{2}\times100=50^o\)
Xét \(\Delta ABD\) có :
\(\widehat{A}+\widehat{AB}D+\widehat{BDA}=180^o\) (định lí tổng 3 góc trong 1 tam giác)
hay \(45^o+50^o+\widehat{BDA}=180^o\)
\(\Rightarrow\widehat{BDA}=180^o-50^o-45^o=85^o\)
Xét \(\Delta CBD\) có :
\(\widehat{CBD}+\widehat{BDC}+\widehat{C}=180^o\) ( định lí tổng 3 góc trong 1 tam giác )
hay \(50^o+\widehat{BDC}+35^o=180^o\)
\(\Rightarrow\widehat{BDC}=180^o-50^o-35^o=95^o\)
Vậy \(\widehat{ADB}=85^o\)
\(\widehat{CDB}=95^o\)