Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)
\(\Leftrightarrow r^2=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)
\(\Leftrightarrow\frac{1}{r^2}=\frac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\frac{1}{\left(p-a\right)\left(p-b\right)}+\frac{1}{\left(p-b\right)\left(p-c\right)}+\frac{1}{\left(p-a\right)\left(p-c\right)}\)
\(\Leftrightarrow\frac{1}{r^2}=4\left(\frac{1}{\left(b+c-a\right)\left(a+c-b\right)}+\frac{1}{\left(a+c-b\right)\left(a+b-c\right)}+\frac{1}{\left(b+c-a\right)\left(a+b-c\right)}\right)\)
\(\Leftrightarrow\frac{1}{4r^2}=\frac{1}{c^2-\left(a-b\right)^2}+\frac{1}{a^2-\left(b-c\right)^2}+\frac{1}{b^2-\left(c-a\right)^2}\)
\(\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(áp dụng \(x^2-y^2\le x^2\))
\(\Rightarrow4r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le1\)
\(\Rightarrow\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\ge4\left(1\right)\)
Ta lại có
\(S=\frac{a.ha}{2}=pr=\frac{r\left(a+b+c\right)}{2}\)
\(\Rightarrow ha=\frac{r\left(a+b+c\right)}{a}\)
\(\Rightarrow ha^2=\frac{r^2\left(a+b+c\right)^2}{a^2}\)
Tương tự
\(hb^2=\frac{r^2\left(a+b+c\right)^2}{b^2}\)
\(hc^2=\frac{r^2\left(a+b+c\right)^2}{c^2}\)
Cộng vế theo vế ta được
\(ha^2+hb^2+hc^2=r^2\left(a+b+c\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}=\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\ge4\)
Gọi S là diện tích của tam giác
Ta có :
\(a=\frac{2S}{h_a};b=\frac{2S}{h_b};c=\frac{2S}{h_c}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(a+b+c\right)\left(\frac{h_a+h_b+h_c}{2S}\right)\)
\(=\left(h_a+h_b+h_c\right).\frac{a+b+c}{2S}=\left(h_a+h_b+h_c\right)\left(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\right)\)
=> đpcm
tự kẻ hình nha bạn
a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)
có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\) và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)
\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
để mjnh làm tiếp câu b
b, IN là pg của \(\widehat{AIB}\) (gt)
\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)
\(\Rightarrow NB\cdot AI=IB\cdot NA\)
\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)
IM là pg của \(\widehat{AIC}\) (gt)
\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)
\(\Rightarrow AM\cdot IC=AI\cdot CM\)
\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)
. vẽ Cx vuông góc với CC' tại C
. Vẽ D là điểm đối xứng của A qua Cx, cắt Cx tại E
.Xét\(\Delta ACD\) có: CE vừa là đường cao, vừa là trung tuyến nên \(\Delta ACD\) cân tại C => AC = CD
. Ta có tứ giác AECC' là hình chữ nhật ( Có 3 góc bằng 90 độ)
. => \(CC'=AE=\frac{1}{2}AD\)
. Xét ba điểm B, C, D, ta có: \(BD\le BC+CD\)
. Áp dụng Đl Pitago vào tam giác vuông ABD, có:
. \(AB^2+AD^2=BD^2\) => \(AB^2+\left(2CC'^2\right)\le\left(BC+CD\right)^2\)
. <=>\(AB^2+4CC'^2\le\left(BC+AC\right)^2\)
. <=> \(4CC'^2\le\left(BC+AC\right)^2-AB^2\) \(\left(1\right)\)
. C/m tương tự, ta có: \(4BB'\le\left(AB+BC\right)^2-AC^2\) \(\left(2\right)\)
. \(4AA'\le\left(AB+AC\right)^2-BC^2\) \(\left(3\right)\)
. Từ \(\left(1\right)\) , \(\left(2\right)\) và \(\left(3\right)\) suy ra: \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\) (Phân tích mấy cái trên kia là ra)
. Suy ra: \(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
. Vậy GTNN của \(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\) là 4 khi AB=BC=AC hay tam giác ABC đều