K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

Vì điểm A không thuộc hai đường trung tuyến trên nên hai đường trung tuyến đã cho xuất phát từ B và C.

Gọi BM, CN là các trung tuyến của tam giác.

Giả sử BM có phương trình \(x+y-4=0\), CN có phương trình \(2x-y+1=0\)

Gọi \(M=\left(m;4-m\right)\Rightarrow C\left(2m+2;5-2m\right)\)

Vì C thuộc đường thẳng \(2x-y+1=0\)

\(\Rightarrow2\left(2m+2\right)-\left(5-2m\right)+1=0\)

\(\Leftrightarrow m=0\)

\(\Rightarrow C=\left(2;5\right)\)

Tương tự ta tìm được \(B=\left(3;1\right)\)

\(\Rightarrow BC:4x+y-13=0\)

\(\Rightarrow M=\left(1;9\right)\in BC\)

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

21 tháng 7 2017

hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng .

đặc BM : \(2x-y+1=0\) và CN : \(x+y-4=0\) là 2 trung tuyến của tam giác ABC

đặc B\(\left(x;y\right)\) , ta có N \(\left(\dfrac{x-2}{2};\dfrac{y+3}{2}\right)\)\(\left\{{}\begin{matrix}B\in BM\\N\in CN\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\\dfrac{x-2}{2}+\dfrac{y+3}{2}-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

vậy phương trình đường thẳng chứa cạnh AB là : \(2x-4y+16=0\) \(\Leftrightarrow x-2y+8=0\)

tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x+5y-11=0\) phương trình đường thẳng chứa cạnh BC là : \(4x+y-13=0\)

13 tháng 3 2021

1.

Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)

Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)

Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)

Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(3;1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)

13 tháng 3 2021

2.

1.

Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)

Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)

Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)

Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow C=\left(2;-1\right)\)

Phương trình đường thẳng BC:

\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)

23 tháng 6 2020

+) Phương trình đường cao qua B : 2x - y + 1 = 0 

=> Phương trình AC có dạng : x + 2y + c = 0 

Vì A ( 2; -1 ) thuộc AC => 2 + 2 ( -1 ) + c = 0 => c = 0

=> Phương trình AC: x + 2y = 0 

=> Tọa độ điểm C thỏa mãn phương trình AC và đường cao qua C 

nên là nghiệm của hệ pt: \(\hept{\begin{cases}x+2y=0\\3x+y+2=0\end{cases}}\)<=> C ( -4/5; 2/5) 

+) Phương trình đường cao qua B : 3x + y + 2 = 0 

=> Phương trình AB có dạng : x - 3y + b = 0 

Vì A ( 2; -1 ) thuộc AB => 2 - 3 ( -1 ) + b= 0 => c = -5

=> Phương trình AB: x -3y -5 = 0 

=> Tọa độ điểm B thỏa mãn phương trình AB và đường cao qua CB

nên là nghiệm của hệ pt: \(\hept{\begin{cases}2x-y+1=0\\x-3y-5=0\end{cases}}\)<=> C ( -8/5; -11/5) 

+) M là trung điêm BC => M ( -6/5; -9/10 ) 

Mà A ( 2; -1) 

=> \(\overrightarrow{MA}=\left(\frac{16}{5};-\frac{1}{10}\right)\)

=> MA có véc tơ pháp tuyến: ( 1/10; 16/5)

=> Viết phương trình MA : 1/10 ( x- 2 ) + 16/5 ( y+ 1 ) = 0 

<=> x + 32y+ 30 = 0  

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4 2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết...
Đọc tiếp

1/Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD. Đỉnh B thuộc đường thẳng d1: 2x-y+2=0, đỉnh C thuộc đường thẳng d2: x-y-5=0. Gọi H là hình chiếu của B xuống AC, biết M(\(\dfrac{9}{5}\);\(\dfrac{2}{5}\)), K(9;2) lần lượt là trung điểm của AH và CD Tìm tọa độ các đỉnh hình chữ nhật ABCD, biết điểm C có hoành độ lờn hơn 4

2/Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, biết B(\(\dfrac{1}{2}\);1). Đường tròn nội tiếp tam giác ABC tieepa xúc với BC, CA, AB lần lượt tại D,E,F. Biết điểm D(3;1). đường thẳng È:y-3=0. Tìm tọa độ điểm A biết A có tung độ dương

3/ Trong mặt phẳng tọa độ Oxy, choa tam giác ABC cân tại A , D là trung điểm AB . Biết rằng I(\(\dfrac{11}{3}\);\(\dfrac{5}{3}\)); E(\(\dfrac{13}{3}\);\(\dfrac{5}{3}\)) lần lượt là tâm đường tròn ngoại tiếp tam giác ABC , trọng tâm tam giác ADC, các diểm M(3;-1);N(-3;0) lần lượt thuộc các đường thẳng DC, AB.Tìm tọa độ các điểm A,B,C, biết A có tung độ dương

4/ Trong mặt phẳng tọa độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâm H(1;0) , chân đường cao hạ từ đinh B là K(0;2), trung điểm cạnh AB là M (3;1)

5/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại C có phân giác trong AD với D (\(\dfrac{7}{2}\);-\(\dfrac{7}{2}\)) thuộc BC . Gọi E,F là hai điểm làn lượt thuộc các cạnh AB, AC sao cho AE=AF. Đường thẳng EF cắt BC taị K.Biết E(\(\dfrac{3}{2}\);-\(\dfrac{5}{2}\)), F có hoành độ nhỏ hơn 3 và phương trình đường thẳng AK : x-2y-3=0. Viết phương trình của các cạnh tam giác ABC.

6/ Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x-1)2+(y-1)2 + 25 và các điểm A (7;9), B(0;8). Tìm tọa độ điểm M thuộc (c) sao cho biểu thức P= MA+2MB min

7/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có góc BAC =120O , đường cao BH: \(\sqrt{3}\)x+y-2=0. Trung điểm của cạnh BC là M( \(\sqrt{3}\);\(\dfrac{1}{2}\)) và trực tâm H(0;2). Tìm tọa độ các đỉnh B,C của tam giác ABC

8/ Trong mặt phẳng tọa độ Oxy, CHO (C1); x2 + y2-6x+8y+23=0, (C2) : x2 + y2+12x-10y+53=0 và (d) : x-y-1=0. Viết phương trình đường trong (C) có tâm thuộc (d), tiếp xúc trong với (C1), và tiếp xúc ngoài với (C2)

0