K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
Gọi $G$ là giao điểm của $BD,CE$ thì $G$ chính là trọng tâm tam giác $ABC$

Theo tính chất trọng tâm và trung tuyến:

\(BG=\frac{2}{3}BD=\frac{2}{3}.9=6\)

\(CG=\frac{2}{3}CE=\frac{2}{3}.12=8\)

\(\Rightarrow BG^2+CG^2=6^2+8^2=100=10^2=BC^2\)

Do đó theo định lý Pitago (đảo) thì tam giác $BGC$ vuông tại $G$

\(\Rightarrow \widehat{BGC}=90^0\Rightarrow BD\perp CE\)

b)

\(EG=CE-GC=12-8=4\)

\(DG=BD-BG=9-6=3\)

\(S_{GAB}=2S_{GEB}=2.\frac{EG.GB}{2}=4.6=24\) (cm vuông)

\(S_{AGC}=2S_{GDC}=2.\frac{GD.GC}{2}=3.8=24\) (cm vuông)

\(S_{GBC}=\frac{GB.GC}{2}=\frac{6.8}{2}=24\) (cm vuông)

\(\Rightarrow S_{ABC}=S_{GAB}+S_{GAC}+S_{GBC}=24+24+24=72\) (cm vuông)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Hình vẽ:
Diện tích tam giác

29 tháng 9 2018

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

29 tháng 9 2018

Gọi G là trọng tâm của tam giác ABC, khi đó ta có:

GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)

GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2

=> ▲BGC vuông tại G hay BD vuông góc CE

5 tháng 5 2023

loading...    

a) Sửa đề: Chứng minh ∆ABC ∽ ∆EAC

Giải:

∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BM = CM = BC : 2

= 10 : 2 = 5 (cm)

∆AMC có AM = CM = 5 (cm)

⇒ ∆AMC cân tại M

⇒ ∠MAC = ∠MCA (hai góc ở đáy)

Do MA ⊥ DE (gt)

CE ⊥ DE (gt)

⇒ MA // DE

⇒ ∠MAC = ∠ACE (so le trong)

Mà ∠MAC = ∠MCA (cmt)

⇒ ∠MAC = ∠ACE

⇒ ∠ACE = ∠BCA (do ∠MAC = ∠BAC)

Xét hai tam giác vuông:

∆ABC và ∆EAC có:

∠BCA = ∠ACE (cmt)

⇒ ∆ABC ∽ ∆EAC (g-g)

b) Do ∆ABC ∽ ∆EAC (cmt)

⇒ AC/CE = BC/AC

⇒ CE = AC²/BC

= 8²/10

= 6,4 (cm)

12 tháng 8 2016

Gọi G là giao điểm của BD và CE. Ta có G là trọng tâm của △ABC

Đặt GD=x,GE=y. Khi đó GB=2x,GC=2y.


Áp dụng định lý Pitago cho các tam giác vuông BGE, CGD, ta có:

GE2+GB2=BE2⇒y2+4x2=9 (1)

GD2+GC2=CD2⇒x2+4y2=16 (2)

Từ (1) và (2) ta có: 5(x2+y2)=25

⇒x2+y2=5

Áp dụng định lý Pitago cho tam giác vuông BGC, ta có: 

BC2=GB2+GC2=4x2+4y2=20

Vậy: BC = \(\sqrt[2]{5}\)

16 tháng 5 2020

ai giúp mình với