Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) d là đường trung trực của đoạn thẳng AB (gt).
M là điểm thuộc d (gt).
\(\Rightarrow MA=MB\) (Tính chất điểm thuộc đường trung trực).
\(\Rightarrow\Delta MAB\) cân tại M.
b) Xét \(\Delta MAB\) cân tại M:
MO là trung tuyến (O là trung điểm của AB).
\(\Rightarrow\) MO là phân giác \(\widehat{EMF}\) (Tính chất tam giác cân).
\(\Rightarrow\widehat{EMO}=\widehat{FMO}.\)
Xét \(\Delta MOE\) vuông tại E và \(\Delta MOF\) vuông tại F:
\(\widehat{EMO}=\widehat{FMO}\left(cmt\right).\\ MOchung.\)
\(\Rightarrow\) \(\Delta MOE\) \(=\) \(\Delta MOF\) (cạnh huyền - góc nhọn).
\(\Rightarrow ME=MF\) (2 cạnh tương ứng).
\(\Rightarrow\Delta MEF\) cân tại M.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
c: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)
hay CI\(\perp\)CA
a=6h
b=67h
moi hok lop 6