K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

a) Xét △AMB và △ANC có

AB = AC (gt)

BM = CN (gt)

AM = AN (gt)

=> △AMB = △ANC (c.c.c)

b) Vì △ABC có AB=AC

=> △ABC cân tại A

=> góc ABC = góc ACB

mà M, N ∈ BC

=> Góc ABN = góc ACM

14 tháng 11 2021

Xét △ ABC có AB=AC

⇒ △ ABC cân tại A

⇒ ^B=^C hay ^ABN=^ACM

Xét △AMB và △ANC có:

     AB=AC(gt)

    ^B=^C (cmt)

     BM=CN(gt)

⇒ △AMB = △ANC(c.g.c)

30 tháng 12 2021

Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

AN=AM

Do đó: ΔABN=ΔACM

Suy ra: \(\widehat{ABN}=\widehat{ACM}\)

22 tháng 3 2023

a) Xét tam giác AMB và tam giác AMC ta có:

AM chung

AB=AC (gt)

MB=MC (vì M là trung điểm của BC)

Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)

b) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc BAM=góc CAM (2 góc tương ứng)

Suy ra AM là tia phân giác của góc BAC (đpcm)

c) Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc AMB=góc AMC(2 góc tương ứng)

Mà góc AMB+góc AMC=180 độ (2 góc kề bù)

Suy ra góc AMB=góc AMC=180 độ/2=90 độ

Suy ra AM vuông góc với BC tại M (đpcm)

Vì tam giác AMB=tam giác AMC (cmt)

Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)

 

9 tháng 4 2015

\Delta CÓ NGHĨA LÀ TAM GIÁC NHÉ

21 tháng 12 2023

a: Xét ΔABN và ΔACM có

AB=AC

\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

b: Ta có: AM+MB=AB

AN+NC=AC

mà AM=AN và AB=AC

nên MB=NC

Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,F thẳng hàng

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔMBC=ΔNCB

b: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)

\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)

nên \(\widehat{ABN}=\widehat{ACM}\)

c: AM+MB=AB

AN+NC=AC

mà AB=AC

và MB=NC

nên AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng