Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)có : AB2 + AC2 = (4,5)2 + 62 = 56,25 = (7,5)2 = BC2 nên\(\Delta ABC\)vuông tại A
=> Trung tuyến AM bằng nửa cạnh huyền BC và bằng : 7,5 : 2 = 3,75 (cm)
Hạ MH và BK vuông AC,
Ta thấy MH là đường tr.bình t.g BCK.
Có góc BÂK =60 độ
nên KA =AB/2 =2
và BK =2.căn3
=> MH =BK/2 = căn3.
Mặt khác KC =KA +AC =8
=> KH =KC/2 =4
=> AH =2. T
a lại có AM2 =AH^2+HM^2 =4+3 =7
nên AM = √7
Áp dụng định lí Cos : \(BC=\sqrt{AB^2+AC^2-2AB.AC.cos\widehat{BAC}}=\sqrt{4^2+6^2-2.4.6.cos120^o}=2\sqrt{19}\) (cm)
\(AM=\sqrt{\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}}=...\)
2,65 ( làm tròn đến số thập phân số 2)
kết quả đúng mkf thử rồi
a: Xét ΔABC và ΔANM có
AB/AN=AC/AM
góc A chung
=>ΔABC đồng dạng với ΔANM
b: ΔABC đồng dạng với ΔANM
=>BC/NM=AB/AN
=>4,5/NM=2/4=1/2
=>NM=9cm
Kẻ \(AH\perp BC\left(H\in BC\right)\)
Ta có: \(AB^2+AC^2=BC^2\left(3^2+4^2=5^2\right)\Rightarrow\Delta ABC\) vuông tại A
\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.5=3.4\Rightarrow AH=2,4\left(cm\right)\)
AD là tia p/g của \(\widehat{BAC}\left(D\in BC\right)\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{3}{4}\)
\(\Rightarrow\frac{DB}{DB+DC}=\frac{3}{3+4}\Rightarrow\frac{DB}{BC}=\frac{3}{7}\Rightarrow\frac{DB}{5}=\frac{3}{7}\Rightarrow DB=\frac{15}{7}\left(cm\right)\)
\(BM=\frac{1}{2}BC=\frac{1}{2}.5=\frac{5}{2}\left(cm\right)\)
Do đó: \(DM=BM-BD=\frac{5}{2}-\frac{15}{7}=\frac{5}{14}\left(cm\right)\)
Vậy \(S_{ADM}=\frac{1}{2}AH.DM=\frac{1}{2}.2,4.\frac{5}{14}=\frac{3}{7}\left(cm^2\right)\)
có \(AB^2+AC^2=BC^2\)
\(4^2+7^2=BC^2\)
\(BC^2=65\)
\(BC=\sqrt{65}\)
ᵈʳᵉᵃᵐ乡๖ۣۜH๖ۣۜA๖ۣۜY๖ۣۜA๖ۣۜT๖ۣۜO sai rồi, đây là tam giác thường, và bạn cx chưa cm là tam giác vuông, nên k sử dunhj đc định lí Ptago đâu/