K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 3 2016
câu a : làm như bài trên mà mk đã làm
Cho tam giác ABC, AB < AC. Trung tuyến AM.a) CMR: góc CAM < góc BAMb)Từ M vẽ tia Mx sao cho góc BMx nhận tia MA là tia phân giác của góc đó.Gọi D là giao điểm của tia Mx với cạnh AC. CMR: BM>MD
=> đìu ko thể chug mih
câu b :
Ta có :AB < AC
=> góc AMB < góc AMC ( đìu ko thể chug mk)
- Câu b) chứng minh được thì câu a) mới chứng minh được:
b) *Trên tia đối của tia MA, lấy điểm O sao cho MA=MO.
Xét ▲ABM và ▲OCM có:
AM=OM (gt)
\(\widehat{AMB}=\widehat{OMC}\)(đối đỉnh)
BM=CM(M là trung điểm BC)
=>▲ABM=▲OCM (c-g-c)
=>AB=OC (2 cạnh tương ứng).
\(\widehat{ABM}=\widehat{OCM}\)(2 góc tương ứng).
- Mà AB<AC (gt)
=>AC>OC
Xét ▲ACO có:
AC>OC (cmt)
=>\(\widehat{AOC}>\widehat{OAC}\)(quan hệ giữa cạnh và góc đối diện trong tam giác).
Mà\(\widehat{AOC}=\widehat{OAB}\)(cmt)
=>\(\widehat{OAB}>\widehat{OAC}\).
a) - Xét tam giác ABC có:
AB<AC (gt)
=>\(\widehat{ACB}< \widehat{ABC}\)(quan hệ giữa cạnh và góc đối diện trong tam giác).
- Ta có: \(\widehat{AMB}+\widehat{ABM}+\widehat{BAM}=180^0\)(tổng 3 góc trong ▲ABM)
\(\widehat{AMC}+\widehat{ACM}+\widehat{CAM}=180^0\)(tổng 3 góc trong ▲ACM)
Mà \(\widehat{BAM}>\widehat{CAM}\)(cmt) ; \(\widehat{ABM}>\widehat{ACM}\)(cmt)
=>\(\widehat{AMB}< \widehat{AMC}\)
cảm ơn bạn nha