Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)
Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.
Suy ra AH \(\perp\) BC
Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.
Suy ra góc HFC + góc HDC = 180o
Suy ra HFCD là tứ giác nội tiếp
\(\Rightarrow\) góc HDC = góc HCD.
b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH
Suy ra MD = ME
Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD
Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD
Theo ý a) ta có góc HFD = góc HCD = góc ECD
\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD
Suy ra tứ giác MFOD là tứ giác nội tiếp
\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO
Chứng minh tương tự ta có MEFO là tứ giác nội tiếp
Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.
Đok đề cứ thấy sai sai... Sao cho J lại thoả mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\) :))
Áp dụng định lý Ceva:
\(\frac{BM}{MA}.\frac{AN}{NC}.\frac{CP}{PB}=1\Rightarrow2.1.\frac{CP}{PB}=1\Rightarrow BP=2CP\)
\(\Rightarrow BP=2\left(BC-BP\right)\Rightarrow BC=\frac{3}{2}BP\Rightarrow\overrightarrow{BC}=-\frac{3}{2}\overrightarrow{PB}\)
Áp dụng Menelaus cho tam giác MBC:
\(\frac{IM}{IC}.\frac{CP}{PB}.\frac{BA}{AM}=1\Rightarrow\frac{IM}{IC}.\frac{1}{2}.3=1\Rightarrow CI=\frac{3}{2}IM\)
\(xy=-\frac{9}{4}\)
Nguyễn Việt Lâm: mk chưa hk mấy đli này, bn có cách giải nào khác k?
Chỉ lm bài thoii, hình bn tự vẽ nha !!!
\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)
Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp
Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)
\(b.\) Tứ giác \(ADEH\) có:
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp
Từ đó \(\widehat{BAK}=\widehat{BDE}\)
Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )
Do đó \(\widehat{BJK}=\widehat{BDE}\)
\(\overrightarrow{BI}=-\frac{2}{7}\overrightarrow{IC}=-\frac{2}{7}\left(\overrightarrow{BC}-\overrightarrow{BI}\right)\Rightarrow\overrightarrow{BI}=-\frac{2}{5}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}-\frac{2}{5}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\frac{5}{2}\overrightarrow{AB}-\frac{5}{2}\overrightarrow{AI}\) (1)
\(\overrightarrow{BJ}=\frac{3}{2}\overrightarrow{IC}=-\frac{3}{7}\overrightarrow{BI}=\frac{6}{35}\overrightarrow{BC}\)
\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}+\frac{6}{35}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\frac{35}{6}\overrightarrow{AJ}-\frac{35}{6}\overrightarrow{AB}\) (2)
Từ (1);(2) ta có:
\(\frac{5}{2}\overrightarrow{AB}-\frac{5}{2}\overrightarrow{AI}=\frac{35}{6}\overrightarrow{AJ}-\frac{35}{6}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{AB}=...\)
Quá trình tính có thể nhầm lẫn con số và dấu, bạn kiểm tra lại
A B C I M H J K
a. ta có \(BI=\frac{1}{4}BA=\frac{3}{4}\)
Dễ thấy hai tam giác \(\Delta ABM~\Delta CBI\Rightarrow\frac{MB}{IB}=\frac{AB}{BC}\Rightarrow MB=\frac{3}{4}.\frac{3}{4}=\frac{9}{16}\)
vậy \(\frac{BM}{BC}=\frac{9}{64}\).
b.Xét tam giác AJB ta áp dụng địh lý menelaus có
\(\frac{AC}{CJ}.\frac{JK}{KB}.\frac{BI}{IA}=1\Rightarrow\frac{JK}{KB}=\frac{3}{2}\Rightarrow\frac{BK}{KJ}=\frac{2}{3}\)