Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x_M=\frac{x_B+x_C}{2}=\frac{-3+5}{2}=1\)
\(y_M=\frac{y_B+y_C}{2}=\frac{-2+0}{2}=-1\)
Duy Trần
a) Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)
Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)
Phương trình đường thẳng BC đi qua 2 điểm B và C là:
\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)
b) Gọi d là đường trung trực của cạnh AB.
Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).
Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}} = \left( {1;2} \right)\)
Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}} = \left( {1;2} \right)\) là:
\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)
c) Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)
Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)
Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM} = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}} = \left( {5;1} \right)\)
Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}} = \left( {5;1} \right)\) là:
\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)
a) Gọi M là trung điểm cạnh CA thì \(M\left(\frac{3}{2};1\right)\) và \(\overrightarrow{BM}=\left(\frac{9}{2};-3\right)\).
Đường trung tuyến BM của tam giác có vec tơ chỉ phương \(\overrightarrow{u}=\frac{2}{3}.\overrightarrow{BM}=\left(3;-2\right)\) suy ra ta có phương trình
\(\frac{x+3}{3}=\frac{y-4}{-2}\)
b) Do đường cao kẻ từ A có phương vuông góc với đường thẳng BC nên nó nhận \(\overrightarrow{BC}=\left(5;-4\right)\) làm vec tơ pháp tuyến. Suy ra có phương trình.
\(5.\left(x-1\right)-4\left(y-2\right)=0\) hay \(5x-4y+3=0\)
c) Ta có \(\overrightarrow{AB}=\left(-4;2\right)=2.\left(-2;1\right)\). Gọi N là trung điểm AC thì N(-1;3)
Đường trung trực của cạnh AB đi qua N(-1;3) và có vec tơ pháp tuyến
\(\overrightarrow{n}=\frac{1}{2}.\overrightarrow{AB}=\left(-2;1\right)\)
Suy ra có phương trình
\(-2.\left(x+1\right)+1.\left(y-3\right)=0\) hay \(-2x+y-5=0\)
bạn ơi trên −−→BM=(92;−3)��→=(92;−3)
dưới −−→BM=(3;−2) là sao bạna.
\(\overrightarrow{BC}=\left(1;3\right)\Rightarrow\) đường thẳng BC nhận (3;-1) là 1 vtpt
Phương trình tổng quát BC qua B(-1;0) có dạng:
\(3\left(x+1\right)-1\left(y-0\right)=0\Leftrightarrow3x-y+3=0\)
Pt AB và AC em tự viết tương tự
b.
Do M là trung điểm BC, theo công thức trung điểm \(\Rightarrow M\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(-\dfrac{5}{2};\dfrac{1}{2}\right)\Rightarrow\) đường thẳng AM nhận (1;5) là 1 vtpt
Phương trình AM qua A(2;1) có dạng:
\(1\left(x-2\right)+5\left(y-1\right)=0\Leftrightarrow x+5y-7=0\)
c.
Do AH vuông góc BC nên AH nhận (1;3) là 1 vtpt
Phương trình AH qua A có dạng:
\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)
d.
Gọi I là trung điểm AB \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)
\(\overrightarrow{BA}=\left(3;1\right)\)
Do trung trực AB vuông góc và đi qua trung điểm AB nên đi qua I và nhận (3;1) là 1 vtpt
Phương trình:
\(3\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x+y-2=0\)
a: vecto AB=(2;2)=(1;1)
=>VTPT là (-1;1)
Phương trình tham số AB là: \(\left\{{}\begin{matrix}x=-1+t\\y=0+t=t\end{matrix}\right.\)
Phương trình tổng quát của AB là:
-1(x+1)+1(y-0)=0
=>-x-1+y=0
=>x-y+1=0
b: vecto BC=(2;0)
Vì AH vuông góc BC
nên AH nhận vecto BC làm vtpt và đi qua A
=>AH: 2(x+1)+0(y-0)=0
=>2x+2=0
=>x=-1
c: Tọa độ M la:
x=(-1+3)/2=2/2=1 và y=(0+2)/2=1
B(1;2); M(1;1)
vecto BM=(0;-1)
=>VTPT là (1;0)
Phương trình BM là:
1(x-1)+0(y-2)=0
=>x-1=0
=>x=1
Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.
= (3; 3) => ⊥ nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:
AH : 3(x – 1) + 3(y -4) = 0
3x + 3y – 15 = 0
=> x + y – 5 = 0
Gọi M là trung điểm BC ta có M (; )
Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:
AM : x + y – 5 = 0
a/ \(\overrightarrow{AB}=\left(-1;2\right)\Rightarrow\) đường thẳng AB nhận \(\left(-1;2\right)\) là 1 vtcp
Phương trình tham số AB: \(\left\{{}\begin{matrix}x=2-t\\y=-3+2t\end{matrix}\right.\)
b/ Gọi N là trung điểm AB \(\Rightarrow N\left(\frac{3}{2};-2\right)\Rightarrow\overrightarrow{CN}=\left(\frac{5}{2};-4\right)=\frac{1}{2}\left(5;-8\right)\)
Đường thẳng CN nhận \(\left(5;-8\right)\) là 1 vtcp
Phương trình tham số CN: \(\left\{{}\begin{matrix}x=-1+5t\\y=2-8t\end{matrix}\right.\)
c/ Gọi M là trung điểm AC \(\Rightarrow M\left(\frac{1}{2};-\frac{1}{2}\right)\)
\(\overrightarrow{AC}=\left(-3;5\right)=-1\left(3;-5\right)\)
Trung trực AC vuông góc AC nên nhận \(\left(3;-5\right)\) là 1 vtpt
Phương trình trung trực AC:
\(3\left(x-\frac{1}{2}\right)-5\left(y+\frac{1}{2}\right)=0\Leftrightarrow3x-5y-4=0\)
d/ \(\overrightarrow{BC}=\left(-2;3\right)=-1\left(2;-3\right)\)
AH vuông góc BC nên nhận \(\left(2;-3\right)\) là 1 vtpt
Phương trình AH:
\(2\left(x-2\right)-3\left(y+3\right)=0\Leftrightarrow2x-3y-13=0\)
\(\overrightarrow{AB}\left(2;1\right);\overrightarrow{BC}\left(-3;1\right);\overrightarrow{CA}\left(1;-2\right)\)
\(ptts:\)
\(d_{AB}:\left\{{}\begin{matrix}x=2+2t\\y=t\end{matrix}\right.\)
\(d_{BC}:\left\{{}\begin{matrix}x=4-3t\\y=1+t\end{matrix}\right.\)
\(d_{CA}:\left\{{}\begin{matrix}x=1+t\\y=2-2t\end{matrix}\right.\)
\(pttq:\)
\(d_{AB}:-1\left(x-2\right)+2y=0\Leftrightarrow2y-x+2=0\)
\(d_{BC}:x-4+3\left(y-1\right)=0\Leftrightarrow x+3y-7=0\)
\(d_{CA}:2\left(x-1\right)+y-2=0\Leftrightarrow2x+y-4=0\)
b/ \(\overrightarrow{MB}=\overrightarrow{CM}\Rightarrow M\left(\dfrac{x_B+x_C}{2};\dfrac{y_B+y_C}{2}\right)\Rightarrow M\left(\dfrac{5}{2};\dfrac{3}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}\left(\dfrac{1}{2};\dfrac{3}{2}\right)\Rightarrow\overrightarrow{n_{AM}}=\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\)
\(\Rightarrow d_{AM}:-\dfrac{3}{2}\left(x-2\right)+\dfrac{1}{2}y=0\Leftrightarrow\dfrac{1}{2}y-\dfrac{3}{2}x+3=0\)
a.
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtcp
Phương trình AB (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+2t\\y=2-t\end{matrix}\right.\)
\(\overrightarrow{CB}=\left(5;-1\right)\Rightarrow\) đường thẳng BC nhận (5;-1) là 1 vtcp
Phương trình BC (qua C) có dạng: \(\left\{{}\begin{matrix}x=5t_1\\y=1-t_1\end{matrix}\right.\)
\(\overrightarrow{CA}=\left(1;1\right)\Rightarrow\) đường thẳng AC nhận (1;1) là 1 vtcp
Phương trình AC (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+t_2\\y=2+t_2\end{matrix}\right.\)
b.
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{5}{2};\dfrac{1}{2}\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)=\dfrac{3}{2}\left(1;-1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận (1;-1) là 1 vtcp
Phương trình AM (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+t_3\\y=2-t_3\end{matrix}\right.\)
c.
Đường thẳng AH vuông góc BC nên nhận (1;5) là 1 vtcp
Phương trình AH (qua A) có dạng: \(\left\{{}\begin{matrix}x=1+t_4\\y=2+5t_4\end{matrix}\right.\)
d.
Trung trực AB vuông góc AB nên nhận (1;2) là 1 vtcp
Gọi N là trung điểm AB \(\Rightarrow N\left(3;1\right)\)
Trung trực AB đi qua N và có vtcp là (1;2) nên pt có dạng:
\(\left\{{}\begin{matrix}x=3+t_5\\y=1+2t_5\end{matrix}\right.\)