Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C E D K
a) Xét \(\Delta\)ABD và \(\Delta\)EBD có:
BD chung
\(\widehat{ABD}\) = \(\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABE}\) )
AB = EB (gt)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) Gọi giao điểm của BD và AE là K.
Xét \(\Delta\)ABK và \(\Delta\)EBK có:
AB = EB (GT)
\(\widehat{ABK}\) = \(\widehat{EBK}\) (câu a)
BK chung
=> \(\Delta\)ABK = \(\Delta\)EBK (c.g.c) => \(\widehat{AKB}\) = \(\widehat{EKB}\) (2 góc t ư)
và AK = EK (2 cạnh tương ứng)
Do đó K là trung điểm của AE.
mà \(\widehat{AKB}\) + \(\widehat{EKB}\) = 180 độ (kề bù)
=> \(\widehat{AKB}\) = \(\widehat{EKB}\) = 90 độ
Do vậy BK \(\perp\) AE.
Chúc bn học tốt Nguyễn Thị Nhật Liên
Answer:
Phần c) thì nhờ các cao nhân khác thoii.
C E D A B 1 2
a) Ta xét tam giác ABD và tam giác EBD:
AB = EB (gt)
BD cạnh chung
\(\widehat{B_1}=\widehat{B_2}\)
Vậy tam giác ABD = tam giác EBD (c.g.c)
\(\Rightarrow DE=DA\)
b) Theo phần a), tam giác ABD = tam giác EBD
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
a)Xét ΔBAD va ΔBHD
Có BA=BH;BD là cạnh chung;gocABD=goc HBD→ΔBAD=ΔBHD(c-g-c)
→góc BAD=gocBHD(góc tương ứng)
→góc BAD=gocBAH=90 độ→DH vuông góc với BC
b)ΔBAD=ΔBHD(phần a)→gocADB=gocHDB
→ADB=HDB=110 chia 2=55 độ
Xét ΔABD .Có góc A + gocABD + goc BDA=180 do
→goc ABD=180-90-55=35 do
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)