Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H G
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG
a)
Ta có tam giác ABC cân tại A ( gt )
Mà AH là đường cao
Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC
=> BH = CH = BC / 2 = 6 / 2 = 3 cm
Xét tam giác AHB vuông tại H
Ta có : AB2 = AH2 + BH2 ( Py-ta-go )
52 = AH2 + 32
=> AH2 = 16
=> AH = 4 cm
b)
Ta có G là trọng tâm của tam giác ABC ( gt )
=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC
mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )
=> A,G,H thẳng hàng
c)
gọi CG cắt AB tại E ; BG cắt BC tại F
vì G là trọng tâm => CE ; BF là đường trung tuyến
=> E là trung điềm AB ; F là trung điểm AC
Ta có EA = BA / 2 = 5 / 2 = 2,5 cm
AF = AC / 2 = 5 / 2 = 2,5 cm
Xét tam giác AEC và tam giác AFB
ta có : AE = AF = 2,5
góc BAC chung
AC = AB = 5
Nên 2 tam giác = nhau ( c-g-c )
=> góc ABG = góc ACG ( tương ứng )
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN
B A C H G
a)Xét tam giác ABC cân tại A có AH là đường cao đồng thời là đường trung tuyến
=>BH=HC=\(\frac{BC}{2}=\frac{6}{2}=3\)
Áp dụng định lí Pitago cho tam giác ABH có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2+9=25\)
\(AH^2=16\)
=>AH=4
b) Vì G là trọng tâm của tam giác ABC
Mà AH là đường trung tuyến của tam giác ABC
=>G thuộc AH
=>A,G,H thẳng hàng
c)Xét tam giác ABG và tam giác ACG có:
AH chung
AB=AC(tam giác ABC cân)
BG=CG(G nằm trên trung trực của BC)
=> tam giác ABG=tam giác ACG(c-c-c)
=>góc ABG= góc ACG
a. xét tg ABH và tg ACH vuông tại H có
AB=AC (tg ABC cân tại A)
góc B = góc C (tg ABC cân tại A)
suy ra tg ABH = tg ACH (cạnh huyền-góc nhọn)
=> BH=HC (2 cạnh tương ứng)
b. ta có BC= BH + HC
mà BH=BC => BC/2=6/2=BH=HC=3(cm)
áp dụng định lí Pytago ta có
AB2= AH2 + BH2
=> AH2= AB2 - BH2 =52 - 32= 25 - 9 = 16
=> AH= căn 16 = 4(cm)
c. AH là 1 đường phân giác vì BH=HC
vì AH là 1 đoạn thẳng mà G thuộc AH (trọng tâm của tg là điểm mà 3 đường phân giác cắt nhau)
nên A,H,G thẳng hàng
d. xét tg GBH và tg GCH vuông tại H có
HB=HC (cm ở câu a)
GH là cạnh chung
vậy tg GBH = tg GCH (2 cạnh góc vuông)
=> góc GBH= góc GCH (2 góc tương ứng)
ta có:
góc B= góc GBH+ góc ABG
góc C= góc GCH+ góc ACG
mà góc B = góc C(tg ABC cân tại A)
góc GBH= góc GCH (tg GBH = tg GCH)
nên góc ABG= góc ACG