Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình:
xét \(\Delta\)ABN và \(\Delta\)ACN có:
AB=AC ( \(\Delta\)ABC cân)
\(\widehat{B}=\widehat{C}=45\)
BN=MC (cùng = BC-AB)
=> \(\Delta\)ABN = \(\Delta\)ACN (c-g-c)
=> AN=AN => \(\Delta\)AMN cân
Xét \(\Delta\)ABM có AB=BM => \(\Delta\)ABM cân có \(\widehat{B}=45\)=> \(\widehat{BAM}=\frac{180-45}{2}=67.5\)
Tương tự: \(\widehat{CAN}=\frac{180-45}{2}=67.5\)
=> \(\widehat{MAN}=\left(\widehat{BAM}+\widehat{CAN}-\widehat{ABC}\right)=67.5x2-90=35\)
Vậy ...
=>xét tam giác ACN VÀ TAM GIÁC AMB CÓ
CN=MB
AC=AB
GÓC A CHUNG
=>TAM GIÁC ACN=TAM GIÁC AMB
=>AN=AN (CẠNH TƯƠNG ỨNG)
=>TAM GIÁC AMN CÂN TẠI A
A B C N M
A B C M O I x
Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI
Nối I với O và C.
Xét \(\Delta\)AMB và \(\Delta\)AMC:
AB=AC
AM chung => ^MAB < ^MAC hay ^OAB < ^OAC
MB<MC
Mà ^OAB=^IAC => ^IAC < ^OAC
Xét \(\Delta\)AIC và \(\Delta\)AOC:
Cạnh AC chung
^IAC < ^OAC => IC < OC
AI=AO
Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)
Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI (2)
Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)
Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)
Từ (3) và (4) => ^AOB > ^AOC (đpcm).
Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
A B C M N D
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
Ta có hình vẽ :
A B C M N
Ta có:
\(\Delta ABC\) cân tại A
=> \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-100^0}{2}=40^0\) ( hai góc đáy của tam giác cân ) (1)
Theo bài ra ta lại có:
AM=AN
=> \(\Delta AMN\) cân tại A ( trong tam giác có 2 góc bằng nhau )
\(\Rightarrow\widehat{AMN}=A\widehat{NM}=\dfrac{180^0-\widehat{A}}{2}=40^0\) ( hai góc đáy của tam giác cân) (2)
Từ (1) và (2) suy ra:\(\widehat{B}=\widehat{AMN}\)
=> MN//BC ( vì có cặp góc đồng vị )
(đ.p.c.m)
a: Xet ΔAMB và ΔANC có
AB=AC
\(\widehat{B}=\widehat{C}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
b: BC=6cm nên BH=CH=3cm
=>AH=4(cm)
BM=BC/3=2(cm)
=>MH=1(cm)
\(AM=\sqrt{1^2+4^2}=\sqrt{17}\left(cm\right)\)