K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

1) TA CÓ : AB=AC ( \(\Delta ABC\)CÂN TẠI A)

AD = AE (GT)

=> AB- AE= AC- AD

=> BE = CD

XÉT \(\Delta BEC\)VÀ \(\Delta CDB\)

CÓ : BE = CD ( CMT)

\(\widehat{ABC}=\widehat{ACB}(\Delta ABC\)CÂN TẠI A)

BC LÀ CẠNH CHUNG

\(\Rightarrow\Delta BEC=\Delta CDB\left(C-G-C\right)\)

\(\Rightarrow CE=BD\)( 2 CẠNH TƯƠNG ỨNG)

2) TA CÓ: \(\Delta BEC=\Delta CDB\left(pa\right)\)

\(\Rightarrow\widehat{BEC}=\widehat{CDB}\)( 2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta ACE\)VÀ \(\Delta ABD\)

CÓ: AC =AB ( \(\Delta ABC\)CÂN TẠI A)

AE = AD (GT)

CE = BD ( pa)

\(\Rightarrow\Delta ACE=\Delta ABD\left(C-C-C\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{ABD}\)( 2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta BEG\)VÀ \(\Delta CDG\)

CÓ: \(\widehat{BEC}=\widehat{CDB}\left(cmt\right)\)

BE = CD ( pa)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(\Rightarrow\Delta BEG=\Delta CDG\left(G-C-G\right)\)

\(\Rightarrow EG=DG\)( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\Delta GDE\)CÂN TẠI G ( ĐỊNH LÍ)

3) ( CẠNH BÊN 4,8 CM; CẠNH ĐÁY 10 CM)

CHU VI CỦA TAM GIÁC ABC LÀ:

4,8+ 4,8+ 10 = 19,6 (CM)

KL: CHU VI CỦA TAM GIÁC ABC LÀ 19,6 CM

CHÚC BN HỌC TỐT!!!!!
 

31 tháng 1 2019

1,Vì tam giác ABC cân ở A nên AB=AC. Mà AD=AE

Nên: BD=CE

2,

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

1: Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE

Do đó: ΔABD=ΔACE
Suy ra: BD=CE

2: Xét ΔGBE và ΔGCD có

\(\widehat{GEB}=\widehat{GDC}\)

EB=DC

\(\widehat{GBE}=\widehat{GCD}\)

Do đo: ΔGBE=ΔGCD

Suy ra: GE=GD

hay ΔGDE cân tại G

a: Xét ΔADB và ΔAEC có

AD=AE

\(\widehat{BAD}\) chung

AB=AC

Do đó: ΔADB=ΔAEC

=>BD=CE

b: Ta có: AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đo: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

=>GB=GC

Ta có: ΔEBC=ΔDCB

=>EC=BD

Ta có: EG+GC=EC

DG+GB=DB

mà GC=GB và EC=DB

nên EG=DG

c: TH1: BC=10cm

=>AB=AC=5cm

Vì AB+AC=BC

nên trường hợp này không xảy ra

=>LOại

TH2: BC=5cm

=>AB=AC=10cm

Vì 10+10>5 và 10+5>10 và 10+5>10

nên đây là độ dài ba cạnh của ΔABC phù hợp với yêu cầu đề bài

Chu vi tam giác ABC là:

10+10+5=25(cm)

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H