K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

a.Xét tam giác DBC và tam giác ECB có:

DB=EC (AB=AC và AD=AE)

góc ABC = góc ACB (cân tại A)

BC là cạnh chung

Do đó tam giác DBC = tam giác ECB (c.g.c)

Suy ra BE= CD (ĐPCM)

16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC

=> DB = EC

\(\Delta\)DCE và \(\Delta\)EBD có:

      DB = EC (cmt)

      B = C (gt)

      DC: cạnh chung

=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)

=> BE = CD (hai cạnh tương ứng)

16 tháng 4 2016

A B C D E K

a)Xét tam giác DAC và tam giác EAB có:

AD=AE(giả thiết)

góc A là góc chung

AB=AC(tính chất tam giác cân)

Do đó, tam giác DAC=tam giác EAB(c.g.c)

=>CD=BE(2 cạnh tương ứng)

b)Vì  tam giác DAC=tam giác EAB(c.g.c) nên góc ABE= góc ACD(2 góc tương ứng)

c)Ta có: góc ABC= góc ACB(tính chất tam giác cân) và  góc ABE= góc ACD (chứng minh trên)

=>góc ABC- góc ABE=góc ACB-góc ACD  hay góc BEC = góc DCB => tam giác KBC cân tại K

Vậy tam giác KBC cân tại K

6 tháng 4 2022

a)Xét tam giác DAC và tam giác EAB ta có:                                  AD=AE(gt) góc A là góc chung AB=AC(gt)                                                suy ra tam giác DAC=tam giác EAB(c.g.c) =>CD=BE(2 cạnh tương ứng)  b)Vì tam giác DAC=tam giác EAB(c.g.c) nên góc ABE= góc ACD(2 góc tương ứng)                                                                                             c)Ta có: góc ABC= góc ACB(tính chất tam giác cân) và góc ABE= góc ACD (chứng minh trên) =>góc ABC- góc ABE=góc ACB-góc ACD hay góc BEC = góc DCB => tam giác KBC cân tại K Vậy tam giác KBC cân tại K    câu trả lời đây nha bạn!!!

12 tháng 2 2018

A B C E D K

12 tháng 2 2018

a, ta có:

+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC

+/AB=AC(gt)

AD+BD=AE+CE

Mà AD=AE(gt)

SUY RA:BD=CE

Xét \(\Delta BCD\)và \(\Delta CEB\)

BC chung

\(\widehat{ABC}=\widehat{ACB}\)(cmt)

BD=CE(cmt)

Suy ra:  \(\Delta BCD\)\(\Delta CEB\)

=>BE=CD(đpcm)

14 tháng 2 2016

a) Xét tam giác BDC và tam giác CEB ta có

  BC chung

  góc DBC=góc ECB( do tam giác ABC cân)

  BD=EC  ( AB=AC mà AD=AE)

Nên 2 tam giác bằng nhau

   Nên BE=CD

 

 

11 tháng 1 2022

a) Xét tam giác ABE và tam giác ACD:

AB = AC (Tam giác ABC cân tại A).

AD = AE (gt).

\(\widehat{DAE}\) chung.

\(\Rightarrow\) Tam giác ABE = Tam giác ACD (c - g - c).

\(\Rightarrow\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng).

b) Ta có: \(\widehat{B}=\widehat{ABE}+\widehat{EBC};\widehat{C}=\widehat{ACD}+\widehat{DCB}.\)

Mà \(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A); \(\widehat{ABE}=\widehat{ACD}\left(cmt\right).\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}.\)

\(\Rightarrow\) Tam giác IBC cân tại I.

11 tháng 1 2022

cứu tui mn đang on ơi

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)