K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

a) ΔABCΔABC vuông tại A, theo định lí Py-ta-go

Ta có: BC2 = AB2 + AC2

=> BC2 = 82 + 62

BC2 = 100

=> BC = 100−−−√=10(cm)100=10(cm)

b) Xét hai tam giác vuông ABE và ADE có:

AB = AD (gt)

AE: cạnh chung

Vậy: ΔABE=ΔADE(hcgv)ΔABE=ΔADE(hcgv)

Suy ra: BE = DE (hai cạnh tương ứng)

BEAˆ=DEAˆBEA^=DEA^ (hai góc tương ứng)

Ta có: BEAˆ+BECˆ=180oBEA^+BEC^=180o

DEAˆ+DECˆ=180oDEA^+DEC^=180o

Mà BEAˆ=DEAˆBEA^=DEA^ (cmt)

Suy ra: BECˆ=DECˆBEC^=DEC^

Xét hai tam giác BEC và DEC có:

BE = DE (cmt)

BECˆ=DECˆBEC^=DEC^ (cmt)

EC: cạnh chung

Vậy: ΔBEC=ΔDEC(c−g−c)ΔBEC=ΔDEC(c−g−c).

goi DE ∩∩ BC tại I

có AB = AD (gt)

=> CA là đường trung tuyến của ΔΔ ABC

có AE = 2 cm ( gt)

và AC = 6 cm (gt)

=> AE = 1313AC

=> E là trọng tâm của ΔΔ ABC

=> DE là đường trung tuyến còn lại

=> BI = CI ( theo tính chất đường trung tuyến )

=> I là trung điểm của BC

vậy DE đi qua trung điểm của BC

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

17 tháng 4 2019

Hình tự vẽ:

a) AC = ?

Vì ΔABC cân tại A nên: AC = AB = 4 (cm)

b) So sánh: ∠ABC và ∠ACB, AC và AD

Vì ΔABC cân tại A nên: ∠ABC = ∠ACB

Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt) 

Mà AD € AC ⇒ D ≡ C ⇒ AC = AD

c) AE đi qua trung điểm của BC

Vì D ≡ C nên: AE ⊥ AC.

Xét hai tam giác vuông ABE và ACE có:

AB = AC (câu a)

∠B = ∠C (góc ở đáy)

Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)

⇒ BE = CE (hai cạnh tương ứng)

⇒ E là trung điểm của BC

⇒ AE đi qua trung điểm của BC

d) AG = ?

Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)

Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:

AB2 = AE2 + BE2  ⇒ AE= AB2 - BE= 42 - 2,5= 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)

Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:

AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)

10 tháng 4 2017

giup minh voi. mai co tiet rui

gianroi