Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ΔABCΔABC vuông tại A, theo định lí Py-ta-go
Ta có: BC2 = AB2 + AC2
=> BC2 = 82 + 62
BC2 = 100
=> BC = 100−−−√=10(cm)100=10(cm)
b) Xét hai tam giác vuông ABE và ADE có:
AB = AD (gt)
AE: cạnh chung
Vậy: ΔABE=ΔADE(hcgv)ΔABE=ΔADE(hcgv)
Suy ra: BE = DE (hai cạnh tương ứng)
BEAˆ=DEAˆBEA^=DEA^ (hai góc tương ứng)
Ta có: BEAˆ+BECˆ=180oBEA^+BEC^=180o
DEAˆ+DECˆ=180oDEA^+DEC^=180o
Mà BEAˆ=DEAˆBEA^=DEA^ (cmt)
Suy ra: BECˆ=DECˆBEC^=DEC^
Xét hai tam giác BEC và DEC có:
BE = DE (cmt)
BECˆ=DECˆBEC^=DEC^ (cmt)
EC: cạnh chung
Vậy: ΔBEC=ΔDEC(c−g−c)ΔBEC=ΔDEC(c−g−c).
goi DE ∩∩ BC tại I
có AB = AD (gt)
=> CA là đường trung tuyến của ΔΔ ABC
có AE = 2 cm ( gt)
và AC = 6 cm (gt)
=> AE = 1313AC
=> E là trọng tâm của ΔΔ ABC
=> DE là đường trung tuyến còn lại
=> BI = CI ( theo tính chất đường trung tuyến )
=> I là trung điểm của BC
vậy DE đi qua trung điểm của BC
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Hình tự vẽ:
a) AC = ?
Vì ΔABC cân tại A nên: AC = AB = 4 (cm)
b) So sánh: ∠ABC và ∠ACB, AC và AD
Vì ΔABC cân tại A nên: ∠ABC = ∠ACB
Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt)
Mà AD € AC ⇒ D ≡ C ⇒ AC = AD
c) AE đi qua trung điểm của BC
Vì D ≡ C nên: AE ⊥ AC.
Xét hai tam giác vuông ABE và ACE có:
AB = AC (câu a)
∠B = ∠C (góc ở đáy)
Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)
⇒ BE = CE (hai cạnh tương ứng)
⇒ E là trung điểm của BC
⇒ AE đi qua trung điểm của BC
d) AG = ?
Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)
Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:
AB2 = AE2 + BE2 ⇒ AE2 = AB2 - BE2 = 42 - 2,52 = 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)
Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:
AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)