\(\Delta AHB=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

13 tháng 4 2020

a/

*Cách 1:

Ta có: ΔABC cân tại A

=> AC = AB

Và: \(\widehat{ABC}=\widehat{ACB}\)

Hay: \(\widehat{ABH}=\widehat{ACH}\)

Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AB = AC (cmt)

\(\widehat{ABH}=\widehat{ACH}\) (cmt)

Do đó: ΔAHB = ΔAHC (c.h - g.n)

*Cách 2:

Xét ΔAHB và ΔAHC có:

AB = AC (ΔABC cân tại A)

AH: cạnh chung

=> ΔAHB = ΔAHC (c.h - c.g.v)

b) Có: ΔAHB = ΔAHC (câu a)

=> HB = HC (2 cạnh tương ứng)

Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:

Cạnh huyền HB = HC (câu b)

\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)

=> ΔEBH = ΔFCH (c.h - g.n)

d) Sửa đề: EF // BC

Có: ΔEBH = ΔFCH (câu c)

=> EB = FC (2 cạnh tương ứng)

Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)

Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)

=> AE = AF

=> ΔAEF cân tại A

=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)

Có: ΔABC cân tại A

=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)

Mà 2 góc này lại là 2 góc đồng vị

=> EF // BC

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

25 tháng 12 2018

Xét tg AHB và tg AHC,ta có:

AH chung

gBAH=gCAH(tia phân giác của góc A cắt BC tại H)

AB=AC(gt)

=>tg AHB =tg AHC(c-g-c)

Xét tg ABC,có:AB=AC (gt)

=>tg ABC cân tại A

mà AH là tia phân giác

=>AH là đường cao

=>AH vuông góc vs BC

Ta có:g BAH+g ABH=g AHB=90*

và gDHB+gDBH=gBDH=90*

=>góc HAB = góc BHD

25 tháng 12 2018

gợi ý phần c

gọi F là giao điểm của AH và DE

Xét tg ADH và tg AEH,có

AH chung

ADH=AEH=90

DAH=EAH

=>tg ADH =tg AEH(ch-gn)

=>AD=AE

=>tg ADE cân tại A

mà AF là tia phân giác

=>AF vuông góc vs DE

ta có BHF=EFH=90

=>DE//BC

p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

14 tháng 1 2018

Bạn tự vẽ hình nha 

a) CM: tam giác ABE = tam giác HBE

Xét tam giác ABE (Â=90o) và tam giác HBE (góc H= 90o), ta có:

  Góc ABE = Góc HBE ( BE là p/g góc B)

     BE là cạnh chung

Vậy: tam giác ABE = tam giác HBE ( cạnh huyền-góc nhọn)

c) CM: NM=NC

Xét tam giác AEM và tam giác HEC, ta có:

  góc AEM = góc HEC ( đối đỉnh)

     AE = HE (tam giác ABE = tam gác HBE)

   góc EAM = góc EHC = 90o

Vậy: tam giác AEM = tam giác HEC (g-c-g)

Ta có: AB+AM=BM

          BH+HC=BC

mà BA=BH(tam giác BAE= tam giác BEH)

      AM=HC(tam giác AEM= tam giác HEC)

nên BM=BC

Xét tam giác NBM và tam giác NBC, ta có:

NB là cạnh chung

góc NBM= góc NBC ( BE là p/g góc B)

BM=BC (cmt)

Vậy tam giác NBM= tam giác NBC ( c-g-c)

=> NM=NC ( 2 cạnh tương ứng)

Sorry vì mình khong làm được bài b

19 tháng 3 2021

A B C H

Sửa tam giác ABC cân tại A nhé chứ là tam giác vuông thì chỉ có c.g thôi 

a, Xét tam giác BHA và tam giác AHC ta có : 

AH _ chung 

^BHA = ^AHC = 900

^ABH = ^ACH ( gt ) vì ABC cân tại A

Vậy tam giác BHA = tam giác AHC ( g.c.g )

=> BH = HC ( 2 cạnh tương ứng )

b, Xét tam giác BAH và tam giác CAH ta có : 

BH = HC ( cmt )

^AHB = ^AHC = 900

AH _ chung 

Vậy tam giác BAH = tam giác CAH ( c.g.c )

=> ^BAH = ^CAH ( 2 góc tương ứng )

a) Xét tam giác ABH và tam giác ACH vuông tại H có:

+) AB = AC (chứng minh trên)

+) Góc B = góc C (cmt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=> HB = HC (2 cạnh tương ứng)

b)  Vì tam giác ABH = tam giác ACH nên:

=> Góc BAH = góc CAH (2 góc tương ứng)

8 tháng 3 2020
https://i.imgur.com/Z6XuSBc.jpg
6 tháng 3 2018

A B C D E H I

XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)

    ^E=^D=\(90^0\)

      BC chung                =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)

     ^BCB=^EBC

=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD

ta lại có EB=DC mà AB=AC nên AD=AE

Xét \(\Delta AEI\)VÀ \(\Delta ADI\)

      AE=AD

      ^E=^D=\(90^0\)           =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)

        AI  chung                  =>^EAI=^DAI

XÉT \(\Delta ABH\)\(\Delta ACH\)

    AB=AC

    AH chung              =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

    ^EAI=^DAI           =>^AHB=^AHC

MÀ ^AHB  + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)

VẬY \(AH\perp BC=\left\{H\right\}\)