Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E K
Cm: a) Ta có : AD + DB = AB
AE + EC = AC
và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)
=> AD = DE = AE = EC
Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc A: chung
AE = AD (cmt)
=> t/giác ABE = t/giác ACD (c.g.c)
b) Ta có: t/giác ABE = t/giác ACD (Cmt)
=> BE = CD (hai cạnh tương ứng)
c) Ta có: T/giác ABE = t/giác ACD (Cmt)
=> góc ABE = góc ACD (hai góc tương ứng)
Ta lại có: góc ADC + góc CDB = 1800 (kề bù)
góc ADB + góc BEC = 1800 (kề bù)
và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)
=> góc BDC = góc BEC
Xét t/giác BDK và t/giác CEK
có góc KDB = góc CEK (cmt)
DE = EC (Cmt)
góc DBK = góc ECK (Cmt)
=> t/giác BDK = t/giác CEK (g.c.g)
=> BK = KC (hai cạnh tương ứng)
=> t/giác KEC là t/giác cân tại K
Cm: a) Ta có : AD + DB = AB
AE + EC = AC
và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)
=> AD = DE = AE = EC
Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc A: chung
AE = AD (cmt)
=> t/giác ABE = t/giác ACD (c.g.c)
b) Ta có: t/giác ABE = t/giác ACD (Cmt)
=> BE = CD (hai cạnh tương ứng)
c) Ta có: T/giác ABE = t/giác ACD (Cmt)
=> góc ABE = góc ACD (hai góc tương ứng)
Ta lại có: góc ADC + góc CDB = 1800 (kề bù)
góc ADB + góc BEC = 1800 (kề bù)
và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)
=> góc BDC = góc BEC
Xét t/giác BDK và t/giác CEK
có góc KDB = góc CEK (cmt)
DE = EC (Cmt)
góc DBK = góc ECK (Cmt)
=> t/giác BDK = t/giác CEK (g.c.g)
=> BK = KC (hai cạnh tương ứng)
=> t/giác KEC là t/giác cân tại K
Xét tam giác ABH và ACK có:
AH=AK(gt)
AB=AC(tam giác ABC cân)
Â:góc chung
=> ABH=ACK
=> Góc ABH= Góc ACK
=> Góc OBC= Góc OCB
=> OBC cân tại O
Ta có: OA=OB
OA=OC
Do đó: OB=OC
hay ΔOBC cân tại O