Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) t/g ABC cân tại A
=> ABC = ACB ( tính chất tam giác cân)
Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:
BC là cạnh chung
DCB = EBC (cmt)
Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)
=> BD = CE (2 cạnh tương ứng) (đpcm)
b) t/g DCB = t/g EBC (câu a)
=> CD = BE (2 cạnh tương ứng)
DBC = ECB (2 góc tương ứng)
Mà ABC = ACB (câu a)
=> ABC - DBC = ACB - ECB
=> ABD = ACE
Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:
BE = CD (cmt)
EBO = DCO (cmt)
Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)
=> OB = OC (2 cạnh tương ứng) (1)
OE = OD (2 cạnh tương ứng) (2)
Từ (1) và (2) => đpcm
c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)
=> OAC = OAB (2 góc tương ứng)
=> AO là phân giác CAB (đpcm)
A B C E D O
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (gt)
Góc A chung
=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )
Ta có: AD + DC = AC
AE + EB = AB
mà AD = AE (cm trên); AC = AB (gt)
=> DC = EB
Xét ΔEOB và ΔDOC có:
góc ABD = ACE (cm trên)
EB = DC (cm trên)
góc OEB = ODC (= 90)
=> ΔEOB = ΔDOC (g.c.g)
=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )
c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )
Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:
OE = DO ( cm trên )
AE = AD (câu b)
=> ΔAOE = ΔAOD ( cạnh góc vuông )
=> góc OAE = OAD ( 2 góc tương ứng )
Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.
Chúc học tốt Cathy Trang
a)tam giác BDA = tam giác CEA (CH -GN)
=> BD =CE
b)tam giác ADO = tam giác AEO (CH - GN)
=> OD = OE
ta có : BD+OD = CE + OE
BD = CE; OD = OE; BD+OD=BO; CE+OE = CO
=> BO=CO
c) ta có BE là đường cao của tam giác BOC; CD là đường cao của tam giác BOC
=> OA là đường cao thứ 3
tam giác BOC cân tại O có đường cao cũng là đường phân giác nên OA là đường phân giác của góc BAC
đéo biết làm
tự vẽ hình nha
a, Xét tg ABD và tg ACE có:
AB=AC (gt)
góc A chung
góc ADB = góc AEC (=90)
=>tg ABD = tg ACE (ch-gn)
=>BD=CE (1)
b, Xét tg OAD và tg OAE có;
AD=AE (tg ABD = tg ACE)
OA chung
góc ODA = góc OED (=90)
=>tg OAD = tg OAE (ch-cgv)
=>OD=OE (2)
Từ (1),(2) => BD - OD = CE - OE hay OB = OC
c, từ tg OAD = tg OAE (câu b) => góc OAD = góc OAE
Mà tia OA nằm giữa 2 góc này
=> OA là tia pg của góc BAC
d, Xét tg ABC cân tại A có: \(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (3)
Lại có AD=AE (tg ABD = tg ACE) => tg ADE cân tại A => \(\widehat{ADE}=\widehat{AED}=\frac{180-\widehat{A}}{2}\) (4)
Từ (3),(4) => \(\widehat{B}=\widehat{C}=\widehat{ADE}=\widehat{AED}\) hay góc B = góc AED
mà 2 góc này ở vị trí đồng vị
=>DE//BC