Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MN // BC. Áp dụng định lí Ta-let, ta có :
\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)
b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành
\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)
c) BM = 2 ; AB = 8 nên AM = 6
MNPB là hình bình hành nên NP = BM
Xét \(\Delta NPC\)và \(\Delta AMN\)có :
\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)
\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )
\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)
A A B B C C M M D D E E F F
a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)
\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)
Vậy nên DE + DF = 2AM.
b) Theo định lý Ta let ta có:
\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
a: Xét ΔBAC có DF//AC
nên BF/FA=BD/DC=1/2
=>BF=1/2FA
=>AF/AB=2/3
Xét ΔCAB có DE//AB
nên CD/CB=CE/CA
=>CE/CA=2/3
=>CE=2/3CA
=>AE=1/3CA
=>AE/CE=1/2
=>AE/AC=1/3
b: \(\dfrac{AE}{EM}=\dfrac{AE}{\dfrac{1}{2}\cdot AC}=\dfrac{AE}{AC}\cdot\dfrac{1}{\dfrac{1}{2}}=\dfrac{1}{3}\cdot2=\dfrac{2}{3}=\dfrac{AF}{FB}\)
=>EF//BM
Vì tam giác ABC cân tại A nên AB = AC = 10cm
Vì MN// BC, theo định lí Ta – let ta có:
Mà AB = AC nên AM = AN = 4cm
Suy ra :
Chọn đáp án C