K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

bạn tự vẽ hình nha:

Tứ giác KACB có 2 đường chéo KC và AB cắt nhau tại trung điểm của mỗi đường nên KACB là hình bình hành→KC//BC(1)

tương tự ta có AH//BC(2)

từ (1) và (2)→K, A, H thẳng hàng

mặt khác: KABC là hình bình hành nên KA=BC, tương tự AH=BC.

Vậy H đối xứng Với K qua A

10 tháng 10 2021

Ka//bc chứ 🙄

27 tháng 10 2020

Tứ giác

Do H đối xứng với B qua D (gt)

\(\Rightarrow\) BD = HD

\(\Rightarrow\) D là trung điểm BH

Xét tứ giác ABCH có:

D là trung điểm AC (BD là đường trung tuyến của \(\Delta\)ABC)

D là trung điểm BH (cmt)

\(\Rightarrow\) ABCH là hình bình hành (dấu hiệu 5)

\(\Rightarrow\) AH // BC và AH = BC (hai cạnh đối của hình bình hành)

Do K đối xứng với C qua E (gt)

\(\Rightarrow\) CE = KE

\(\Rightarrow\) E là trung điểm KC

Xét tứ giác ACBK có:

E là trung điểm KC (cmt)

E là trung điểm AB (CE là đường trung tuyến của \(\Delta\)ABC)

\(\Rightarrow\) ACBK là hình bình hành (dấu hiệu 5)

\(\Rightarrow\) AK // BC và AK = BC (hai cạnh đối của hình bình hành)

Do AK // BC (cmt)

AH // BC (cmt)

Theo tiên đề Ơclit \(\Rightarrow\) K, A, H thẳng hàng (1)

Do AK = BC (cmt)

AH = BC (cmt)

\(\Rightarrow\) AK = AH (2)

Từ (1) và (2) \(\Rightarrow\) H đối xứng với K qua A

30 tháng 6 2017

Đối xứng tâm

Ta có GH = GA (cùng bằng 2GD) nên điểm đối xứng với A qua G là H. Tương tự, ta có điểm đối xứng với B qua G là I và điểm đối xứng với C qua G là K

3 tháng 9 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*) Tam giác ABC có ba đường trung tuyến AD, BE, CF cắt nhau tại G nên G là trọng tâm tam giác ABC.

* Ta có: GD = DH (tính chất đối xứng tâm)

⇒ GH = 2GD (l)

GA = 2GD (tính chất đường trung tuyến của tam giác) (2)

Từ (1) và (2) suy ra: GA = GH

Suy ra điểm đối xứng với điểm A qua G là H.

* Ta có: GE = EI (tính chất đối xứng tâm)

⇒ GI = 2GE (3)

Lại có, GB = 2GE (tính chất đường trung tuyến của tam giác) (4)

Từ (3) và (4) suy ra: GB = GI

Suy ra điểm đối xứng với điểm B qua G là I.

+) Ta có: GF = FK (tính chất đối xứng tâm)

⇒ GK = 2GF (5)

GC = 2GF (tính chất đường trung tuyến của tam giác) (6)

Từ (5) và (6) suy ra: GC = GK

Suy ra điểm đối xứng với điểm C qua G là điểm K

18 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét tứ giác ABCD, ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD // BC và AD = BC (1)

* Xét tứ giác ACBE, ta có:

AN = NB (gt)

NC = NE (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

3 tháng 10 2021

xét tam giác ADE có:

AB=DB( gt)

AC=EC (gt)

=> BC//DE ( t/c đường trung bình)

ta có: BC//DE (CMT)

AM vuông góc với BC

AM=IM

=> góc AID= góc AIE

Xét tam giác AEI và tam giác ADIcó:

góc DAI= góc EAI

AI chung 

góc AID= góc AIE (CMT)

=> tam giác  AEI = tam giác ADI (g.c.g)

=> DI=EI(2 cạnh tương ứng)

5 tháng 7 2021

Xét tứ giác ABCD có 

AM=CM; BM=DM => ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//=BC

Xét ứ giác ACBE có

AN=BN; CN=EN => ACBE  là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AE//=BC

=> AD=AE =BC

=> AE trùng AD hay A; D; E thẳng hàng (Qua 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

=> D đối xứng với E qua A

30 tháng 6 2017

Đối xứng tâm

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông.