Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hay :))
A B C C1 B1 A1 D E F H1 G1 G2 H3
\(\Delta ABC\) có \(C_1\) là trung điểm của \(AB\) và \(B_1\) là trung điểm của \(AC\) nên \(B_1C_1\) là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)\(B_1C_1=\frac{1}{2}BC=A_1B=A_1C\)
Và \(B_1C_1//BC\)\(\Rightarrow\)\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( hai góc đồng vị )
Xét \(\Delta AB_1C_1\) và \(\Delta A_1BC_1\) có :
\(AC_1=BC_1\) \(\left(GT\right)\)
\(\widehat{AC_1B_1}=\widehat{C_1BA_1}\) ( chứng minh trên )
\(B_1C_1=A_1B\) ( chứng minh trên )
Do đó : \(\Delta AB_1C_1=\Delta A_1BC_1\) \(\left(c-g-c\right)\)
Chứng minh tương tự với các \(\Delta AB_1C_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C\)\(;\)\(\Delta A_1BC_1\) và \(\Delta A_1B_1C_1\) ta có :
\(\Delta AB_1C_1=\Delta A_1BC_1=\Delta A_1B_1C=\Delta A_1B_1C_1\)
Mà \(S_{AB_1C_1}+S_{A_1BC_1}+S_{A_1B_1C}+S_{A_1B_1C_1}=S_{ABC}\)
\(\Rightarrow\)\(S_{AB_1C_1}+S_{A_1B_1C_1}=\frac{1}{2}S_{ABC}\)
Bài toán trở thành Chứng minh \(S_{A_1EC_1DB_1F}=S_{AB_1C_1}+S_{A_1B_1C_1}\)
Do 4 tam giác bằng nhau nên các tam giác tạo từ các đường cao của chúng tương ứng bằng nhau
\(\Rightarrow\)\(\Delta C_1EA_1=\Delta ADB_1\)\(;\)\(\Delta B_1FA_1=\Delta ADC_1\)
Mà \(S_{A_1EC_1DB_1F}=S_{C_1EA_1}+S_{B_1FA_1}+S_{C_1DB_1}+S_{A_1B_1C_1}\)
\(\Leftrightarrow\)\(S_{A_1EC_1DB_1F}=\left(S_{ADB_1}+S_{ADC_1}+S_{C_1DB_1}\right)+S_{A_1B_1C_1}=S_{AB_1C_1}+S_{A_1B_1C_1}\) ( điều phải chứng minh )
...
A B C A B C 1 1 1 D E F H
Gọi H là trực tâm của \(\Delta\)A1B1C1.
Ta thấy: \(\Delta\)ABC có A1, B1, C1 là trung điểm các cạnh BC, CA, AB
Cho nên: \(S_{A_1B_1C_1}=S_{AB_1C_1}=S_{BA_1C_1}=S_{CA_1B_1}=\frac{S_{ABC}}{4}\). Ta đi chứng minh \(S_{A_1EC_1DB_1F}=2S_{A_1B_1C_1}\)
Xét \(\Delta\)A1B1C1: H là trực tâm => A1H vuông góc B1C1. Mà B1C1 // BC => A1H vuông góc BC
Nhưng: C1E cũng vuông góc BC nên A1H // C1E. Tương tự: C1H // A1E
Do đó: Tứ giác A1HC1E là hình bình hành => \(S_{A_1HC_1}=S_{A_1EC_1}=\frac{S_{A_1HC_1E}}{2}\)
Tương tự, ta có: \(S_{A_1HB_1}=S_{A_1FB_1}=\frac{S_{A_1HB_1F}}{2};S_{B_1HC_1}=S_{B_1DC_1}=\frac{S_{B_1HC_1D}}{2}\)
\(\Rightarrow S_{A_1HC_1}+S_{A_1HB_1}+S_{B_1HC_1}=\frac{S_{A_1EC_1DB_1F}}{2}\Rightarrow S_{A_1EC_1DB_1F}=2.S_{A_1B_1C_1}=2.\frac{S_{ABC}}{4}=\frac{S_{ABC}}{2}\) (đpcm).
(P/S: Các bn có thể tham khảo thêm cách này)
Bạn đã biết làm bài đó chưa vậy .... nếu rồi thì gửi cho mình được không
A B C M A1 B1 C1 H K
Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.
Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\)
Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)
Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)
A B C I K S H
hình bạn tự vẽ nhé
a) Ta có : \(\frac{HI}{AI}=\frac{S_{HIC}}{S_{AIC}}=\frac{S_{HIB}}{S_{AIB}}=\frac{S_{HIC}+S_{HIB}}{S_{AIC}+S_{AIB}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HK}{BK}=\frac{S_{AHC}}{S_{ABC}}\); \(\frac{HS}{CS}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HI}{AI}+\frac{HK}{BK}+\frac{HS}{CS}=\frac{S_{AHC}+S_{BHC}+S_{AHB}}{S_{ABC}}=1\)
b) tương tự câu a : \(\frac{HA_1}{AI}=\frac{2HI}{AI}=\frac{2S_{BHC}}{S_{ABC}}\).....