K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

Theo đề, ta có:\(\hept{\begin{cases}\widehat{A}=2\widehat{B}\\\widehat{C}-\widehat{B}=36^0\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=2\widehat{B}\\\widehat{C}=36^0+\widehat{B}\end{cases}}}\)

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (tổng ba góc của một tam giác)

\(\Rightarrow2\widehat{B}+\widehat{B}+36^0+\widehat{B}=180^0\)

\(\Rightarrow4\widehat{B}=144^0\Rightarrow\widehat{B}=36^0\)

                               \(\widehat{A}=2\widehat{B}=2.36^0=72^0\)

                                \(\widehat{C}=180^0-36^0-72^0=72^0\)

b) \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+1+2}=\frac{180^0}{6}=30^0\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=30^0.3=90^0\\\widehat{B}=30^0.1=30^0\\\widehat{C}=30^0.2=60^0\end{cases}}\)

13 tháng 11 2019

a)Ta có:A+B+C=180(đ/l tông 3 góc t/giác)

Có: C-B=36

=>2C-2B=72

=>2C-A=72

=>A=2C-72

Lại có: C-B=36=>B=C-36

Vậy A+B+C=180

=>2C-72+C-36+C=180

=>(2C+C+C)-(72+36)=180

=>4C-108=180

=>4C=288

=>C=72

=>A=2.72-72=72

=>B=180-2.72=36

b) Câu còn lại bn áp dụng tc của dtsbn nhé!

25 tháng 11 2017

Tổng ba góc của một tam giác là 180

vậy góc A=180*2/5 =72 biết \(\frac{1}{2}\)A là 1,E là 2

sau khi biết góc A thì tính góc E; E=180-72=108

Cứ tương tự mà bạn làm tiếp nhé giờ mình phải đi học rồi

13 tháng 11 2019

b) Ta có:

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+1+2}=\frac{180^0}{6}=30^0.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{\widehat{A}}{3}=30^0\Rightarrow\widehat{A}=30^0.3=90^0\\\frac{\widehat{B}}{1}=30^0\Rightarrow\widehat{B}=30^0.1=30^0\\\frac{\widehat{C}}{2}=30^0\Rightarrow\widehat{C}=30^0.2=60^0\end{matrix}\right.\)

Vậy số đo các góc của \(\Delta ABC\) lần lượt là: \(90^0;30^0;60^0.\)

Chúc bạn học tốt!

13 tháng 11 2019

phần a đâu

Vũ Minh Tuấn

9 tháng 2 2018

A B C O K

a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK

                 => \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\)    (1)

               + \(\widehat{OKB}\)là góc ngoài của tam giác AKC

                  =>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)

Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)

hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)

b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)

=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)

 Xét tam giác ABC có:

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)

=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)

Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)

Ta có: BO là tia phân giác của góc ACB

=>\(2\widehat{ABO}=\widehat{ABC}\)(**)

Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)

=>\(2\widehat{ACO}=\widehat{ACB}\)

=> CO là tia phân giác của góc ACB

11 tháng 8 2019

thank you