Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xet tam giac abd va tam giac aed co
ab=ae
ad la canh chunggoc bad = goc ead
=>tam giác abd = ead
b)gọi i là giao điểm của ad và be
xét tam giác abi và tam giác aei có :
ab=ae
ad là cạnh chung
goc bai = góc eai
=> tam giác abi= tâm giác aei
=>ib=ie =>ad là đường trung trực của be
cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra
mk giải tiếp nè
theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)
xét tam giác bfd và ecd có
góc dbf= góc dec
bd=ed
bdf=edc
=> tam giác dbf= tam giác ecd
k cho mk đi.mk hứa mk tl hết cho mà
Ta có hình vẽ: A B D C E 1 2 1 2 H 1 2 1 2 F
a) Xét 2 tam giác ADB và tam giác ADE có:
góc A1 = góc A2 (gt)
AB = AE (gt)
AD là cạnh chung
=> tam giác ADB = tam giác ADE (c-g-c)
b) Xét 2 tam giác ABH và tam giác AEH có:
AB = AE (gt)
góc A1 = góc A2 (gt)
AH là cạnh chung
=> tam giác ABH = tam giác AEH (c-g-c)
=> BH = EH (2 cạnh tương ứng) (1)
=> góc H1 = góc H2 (2 góc tương ứng)
mà góc H1 + góc H2 = 180 độ
=> góc H1 = góc H2 = 180/2 =90 độ
=> AH \(\perp\) BE (2)
từ (1) và (2) => AH là đường trung trực của BE
=> AD cũng là đường trung trực của BE (vì A, H, D cùng nằm trên 1 đoạn thẳng)
c) Ta có: góc B1 + góc B2 = 180 độ
góc E1 + góc E2 = 180 độ
mặt khác : góc B1 = góc E1 ( vì tam giác ADB = tam giác ADE)
=> góc B2 = góc E2
Vậy góc DBF = góc DEC
Xét 2 tam giác BFD và tam giác ECD có:
góc DBF = góc DEC (cmt)
BD = ED (vì tam giác ADB = tam giác ADE)
góc D1 = góc D2 (đối đỉnh)
=> tam giác BFD = tam giác ECD (g-c-g)
a) Phần a bn chép sai đề rùi phải là tam giác ADB = tam giác ADE mới đúng !.
Xét tam giác ADB và tam giác ADE có:
AB = AE ( theo đề bài )
\(\widehat{BAD}=\widehat{CAD}\)( Vì AD là tia phân giác của \(\Delta ADC\))
AD là cạnh chung
Do đó tam giác ADB = tam giác ADE( c.g.c)
b) Gọi giao điểm của AD và BE là H
Xét tam giác AHB và AHE có:
AH là cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) ( Vì AD là tia phân giác của \(\Delta ADC\) )
AB =AE ( theo đề bài )
Do đó tam giác AHB = tam giác AHE ( c.g.c)
\(\Rightarrow BH=EH\) ( 2 cạnh tương ứn0g)
\(\Rightarrow\)AD là đường trung tuyến của BE
c) *Có tam giác ADB = tam giác ADE ( theo c/m câu a)
\(\Rightarrow\) \(BD=DE\) (2 cạnh tương ứng ) \(\left(1\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\) ( 2 góc tương ứng )
mà:
\(\widehat{ABD}+\widehat{DBF}=180^0\Rightarrow\widehat{DBF}=180^0-\widehat{ABD}\)
\(\widehat{AED}+\widehat{DEC}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{AED}\)
\(\Rightarrow\widehat{DBF}=\widehat{DEC}\)
*Xét tam giác BFD và tam giác ECD có:
\(\widehat{DBF}=\widehat{DEC}\left(cmt\right)\)
\(BD=ED\left(1\right)\)
\(\widehat{BDF}=\widehat{EDC}\) (2 góc đối đỉnh)
Do đó: tam giác BFD = tam giác ECD (g.c.g)
A B C D E F 1 2
a) Vì AD là tia phân giác của tam giác ABC => \(\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ABD và tam giác ADE có : \(\hept{\begin{cases}AE=AB\left(GT\right)\\\widehat{A_1}=\widehat{A_2}\left(cmt\right)\\Chung\end{cases}AD=>}\)Tam giác ADB=Tam giác ADE (c-g-c) (đpcm)
b) Vì tam giác ADB= tam giác ADE ( cmt phần a) => DB = DE ( cạnh tương ứng ) => D thuộc đường trung trực cuae BE (1)
Vì AB=AE(GT) => A thuộc đường trung trực của BE (2).Từ (1);(2)=> AD là đường trung trực của BE (đpcm)
c)Vì tam giác ADB=tam giác ADE ( cmt phần ) => \(\widehat{ABD=}\widehat{AED}\)(góc tương ứng) và \(\widehat{ADB}=\widehat{ADE}\)(góc tương ứng )
Vì\(\widehat{FBD}\)là góc ngoài tam giác ABD => \(\widehat{FBD}=\widehat{ABD}+\widehat{ADB}\)
Vì \(\widehat{DEC}\)là góc ngoài tam giác ADE => \(\widehat{DEC}=\widehat{ADE}+\widehat{AED}\)
\(=>\widehat{FBD}=\widehat{DEC}\)
Xét tam giác BDF và tam giác ECD có : \(\hept{\begin{cases}\widehat{FBD}=\widehat{DEC}\\BD=CE\left(cmt\right)\\\widehat{BDF}=\widehat{ECD}\end{cases}}\)=> Tam giác BDF = Tam giác ECD (đpcm)
=> \(\hept{\begin{cases}CE=BF\\\widehat{C}=\widehat{BFD}\end{cases}}\)
Vì DE = DB(cmt phần b) => Tam giác DBE cân tại D => \(\widehat{DBE}=\widehat{DEB}\)
Mà \(\widehat{FBD}=\widehat{CED}\)(cmt)=> \(\widehat{FBD}+\widehat{DBE}=\widehat{CED}+\widehat{DEB}=>\widehat{FBE}=\widehat{CEB}\)
Xét tam giác BCE và tam giác EFB có : \(\hept{\begin{cases}\widehat{BFD}=\widehat{ECD}\left(cmt\right)\\BF=CE\left(cmt\right)\\\widehat{FBE}=\widehat{CEB}\end{cases}}\)=> Tam giác BCE = Tam giác EFB (g-c-g) (đpcm)
d) Vì \(\widehat{FBD}\)là góc ngoài của tam giác ABC => \(\widehat{FBD}=\widehat{ABC}+\widehat{ACB}=>\widehat{FBD}>\widehat{ACB}\)
Mà \(\widehat{FCB}=\widehat{CED}=>\widehat{CED}>\widehat{ACB}\)=> Tam giác DEC có DC>DE
mà DE=DB( cmt phần b)=> DB <DC
a,
xét tam giác ABD và tam giác ADE có
AB=AE (gt)
GÓC A1= GÓC A2 ( ad là tia phân giác)
ad chung
=> tam giác abd = tam giác ade (c.g.c)
b, xét tam giác BAI và tam giác EAI có:
AB=AE(gt)
A1=A2 (ad là tia phân giác)
AI chung
=> tam giác BAI = tam giác EAI (c.g.c)
=> BI=IE (2 cạnh t,ứng)
vì BI=BE ( cmt) => AI là đường trung trực của BE
P/s: 2 phần kia bạn tự làm nhé ak cái I là BE cắt AD tại I
A B C E D F
Giải:
a, Xét \(\Delta ADB,\Delta ADE\) có:
AD: chung
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AB = AE ( gt )
\(\Rightarrow\Delta ADB=\Delta ADE\left(c-g-c\right)\left(đpcm\right)\)
b, Ta có: AE = AB
\(\Rightarrow\Delta ABE\) cân tại A
\(\Delta ABE\) cân tại A có AD là phân giác
\(\Rightarrow\)AD cũng là đường trung trực ( đpcm )
c, \(\Delta ADB=\Delta ADE\Rightarrow\widehat{ABD}=\widehat{AED}\) ( góc t/ứng )
\(\Rightarrow180^o-\widehat{ABD}=180^o-\widehat{AED}\Rightarrow\widehat{DBF}=\widehat{DEC}\left(đpcm\right)\)
Xét \(\Delta BFD,\Delta ECD\) có:
\(\widehat{DBF}=\widehat{DEC}\left(cmt\right)\)
\(\widehat{BDF}=\widehat{EDC}\) ( đối đỉnh )
\(BD=DE\left(\Delta ADB=\Delta ADE\right)\)
\(\Rightarrow\Delta BFD=\Delta ECD\left(g-c-g\right)\left(đpcm\right)\)
Vậy...
Bạn ơi mình không thấy rõ hình bạn có thể về hình qua bên trái được không