K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (17:46)

a. xét △ABD và △EBD có:

BA = BE (giả thiết); \(\widehat{ABD}=\widehat{EBD}\left(gt\right)\); BD là cạnh chung

⇒ △ABD = △EBD (c;g;c)

b. vì △ABD = △EBD nên \(\widehat{BAD}=\widehat{BED}=90^0\) (2 góc tương ứng)

⇒ DE ⊥ BC

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

29 tháng 12 2016

  * Xét tam giác ADB và tam giác ADE, ta có: 
- AB = AE(gt) 
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt) 
- Chung cạnh AD 
=> Tam giác ADB = Tam giác ADE(c-g-c) (1) 
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)

tk  nha bạn

thank you bạn

(^_^)

29 tháng 12 2016

bạn giải hộ mình phần b,c