K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

25 tháng 2 2019

tu ke hinh:

a, xet tam giac  ADE va tam giac ADB co : AD chung

goc EAD = goc DAB do AD la pg cua goc A (gt)

AE = AB (gt)

=> tam giac  ADE = tam giac ADB (c - g - c)

b, tam giac  ADE = tam giac ADB (Cau a)

=> DE = DB (dn) (1)

      goc DEA = goc DBA (dn)

goc DEA + goc DEC = 180 (kb)

goc DBA + goc DBF = 180 (kb)

=> goc DEC = goc DBF  (2)

xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)

(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)

=> CE = BF

22 tháng 4 2020

A B C D E

a, xét tam giác ABD và tam giác AED có AB = AE (Gt)

AD chung

^BAD = ^EAD do AD Là pg của ^BAC (Gt)

=> tg ABD = tg AED (c-g-c)

=> BD = ED (Đn)

=> tam giác BED cân tại D (đn)

b, tg ABC có AD là pg => DC/AC = DB/AB (tc)

có AC > AB (GT) 

=> DC > DB

Bài làm

a) Xét tam giác ADB và tam giác ADE có: 

AB = AE ( gt )

\(\widehat{BAD}=\widehat{EAD}\)( Do AD phân giác )

AD chung 

=> Tam giác ADB = tam giác ADE ( c.g.c )

=> BD = DE 

=> Tam giác DBE cân ở D.

b) Kẻ BH là tia đối của tia BA.

Xét tam giác BAC có: \(\widehat{CBH}=\widehat{BAC}+\widehat{ACB}\)

=> \(\widehat{ACB}< \widehat{CBH}\) 

Hay \(\widehat{DCE}< \widehat{CBH}\)                                  (1) 

Vì tam giác ADB = tam giác ADE ( cmt )

=> \(\widehat{ABD}=\widehat{AED}\)

Mà \(\widehat{ABD}+\widehat{DBH}=180^0\)( Hai góc kề bù )

\(\widehat{AED}+\widehat{DEC}=180^0\)( Hai góc kề bù )

=> \(\widehat{DBH}=\widehat{DEC}\) 

Hay \(\widehat{CBH}=\widehat{DEC}\)                          (2) 

Từ (1) và (2) => \(\widehat{DCE}< \widehat{DEC}\)

Xét tam giác DEC có: 

\(\widehat{DCE}< \widehat{DEC}\)

=> DE < DC ( Qua hệ giữ cạnh và góc đối diện )

Mà DE = BD ( cmt )

=> BD < DC

Hay DC > DB ( đpcm )

5 tháng 6 2023

a: Xét ΔBAE và ΔBDE có

 BA=BD

góc ABE=góc DBE

BE chung

=>ΔBAE=ΔBDE

=>AE=DE

b: Xét ΔEAI vuông tại A và ΔEDC vuông tại D có

EA=ED

góc AEI=góc DEC

=>ΔEAI=ΔEDC

c: BI=BC

EI=EC

=>BE là trung trực của CI

=>BE vuông góc CI