Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C D E
a) cm DE vuông góc với BC
b) BD là đường trung trực của AE
c) kẻ AH vuông với BC. So sánh EH và EC
Tấu đăng giải cho Đỗ Lê Mỹ Hạnh
AB=BE nen tg ABE can BD vuong goc AE ( t/c tg can)
nen DE vuong goc voi BD la vo ly bai toan sai
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
a) Xét tam giác BAD và tam giác BED có :
BA = BE ( gt )
^ABD = ^EBD ( BD là tia phân giác của ^B )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> AD = ED ( hai cạnh tương ứng )
=> ^BDA = ^BDE ( hai góc tương ứng )
mà ^BDA + ^BDE = 1800 ( kề bù )
=> ^BDA = ^BDE = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )
b) BD vuông góc với AE
=> D thuộc AE
Lại có AD = ED
=> BD là đường trung trực của AE
Giải
a) Xét 2 tam giác BAD và tam giác BED có:
BD là cạnh chung
BA = BE ( gt )
Góc ABD = góc EBD ( gt )
Do đó : Tam giác BAD = tam giác BED (c.g.c )
=> góc BAD = góc BED ( hai cạnh tương ứng )
=> BED = 90° => DE vuông góc với BE
b) Theo câu a ta có : Tam giác BAD = tam giác BED => DA = DE nên D thuộc đừng trung trực của AE
Mà BA = BE ( gt ) nên B thuộc đừng trung trực của AE
Vậy BD là đường trung trực của AE
Học tốt
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
B A D C E H K
câu a ta có AB=BE, BD chung và góc ABD=BDE do BD là phân giác của ABC
do đó hai tam giác ABD và EBD bằng nhau theo trường hợp cạnh góc cạnh,
b, do từ kết quả câu a ta có DEB=DA B=90 độ do đó DE vuông với EB , mà AH vuông góc với EB nên
DE //AH.
c. ta có \(KB=KA+AB=EC+EB=BC\)
mà AB=BE và góc B chung
do đó hai tam giác ABC và EBK bằng nhau theo trường hợp cạnh góc cạnh.
. dễ thấy AM và AB là tia phân giác của hai góc kề bù
do đó chúng vuông góc với nhau
nên tam giác DBM vuông tại D do đó \(\widehat{ABD}+\widehat{AMD}=90^0\)
B A C E D K
a) Xét \(\Delta\)ABD và \(\Delta\)EBD có:
BD chung
\(\widehat{ABD}\) = \(\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABE}\) )
AB = EB (gt)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) Gọi giao điểm của BD và AE là K.
Xét \(\Delta\)ABK và \(\Delta\)EBK có:
AB = EB (GT)
\(\widehat{ABK}\) = \(\widehat{EBK}\) (câu a)
BK chung
=> \(\Delta\)ABK = \(\Delta\)EBK (c.g.c) => \(\widehat{AKB}\) = \(\widehat{EKB}\) (2 góc t ư)
và AK = EK (2 cạnh tương ứng)
Do đó K là trung điểm của AE.
mà \(\widehat{AKB}\) + \(\widehat{EKB}\) = 180 độ (kề bù)
=> \(\widehat{AKB}\) = \(\widehat{EKB}\) = 90 độ
Do vậy BK \(\perp\) AE.
Chúc bn học tốt Nguyễn Thị Nhật Liên
câu c đề sai Liên ơi