Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: p là số nguyên tố >3
nên p chia 3 dư 1 hoặc 2 và chia 2 dư 1
=> p khác; 6k;6k+2;6k+3;6k+4 (chia hết cho 3 hoặc 2)
=> p có dạng 6k+1 hoặc 6k+5 (đpcm)
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN của 11a +2b và 18a +5b
=> 11a +2b chia hết cho d và 18a +5b chia hết cho d
=> 18.﴾11a + 2b﴿ chia hết cho d và 11﴾18a + 5b﴿ chia hết cho d
=> 11﴾18a + 5b﴿ - 18.﴾11a + 2b﴿ chia hết cho d
=> 19 b chia hết cho d
=> 19 chia hết cho d hoặc b chia hết cho d ﴾1﴿
=> d là ước của 19 hoặc d là ước của b
Tương tự ta cũng có 5.﴾11a + 2b﴿ chia hết cho d và 2﴾18a + 5b﴿ chia hết cho d
=> 5.﴾11a + 2b﴿ - 2﴾18a + 5b﴿ chia hết cho d
=> 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5
=> 11a + 2b chia hết cho d
=> 18a + 5b chia hết cho d
=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d
=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d
=> 19b chia hết cho d ( 1 )
=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d
=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d
=> 19a chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d
=> d thuộc Ư(19)
=> d thuộc { 1 ; 19 }
Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b
=> d = 19.
Số nguyên tố T chia cho 6 có thể dư 1;2;3;4;5
=>T có thể có dạng 6k+1;2;3;4;5
Mà;6k+2 chia hết cho2;6k+3 chia hết cho 3;6k+4 chia hết cho 2;và T>3
=> T có dạng 6k+1 và 6k+5