Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) A = √(3+√5)-√(3-√5)-√2
<=>A√2=√(6+2√5)-√(6-2√5)-2
<=>A√2=√(√5+1)^2-√(√5-1)-2
<=>A√2=√5+1-√5+1-2
<=>A√2=0
<=>A=0
=>√(3+√5)-√(3-√5)-√2 =0
b) B=√(4-√7)-√ (4+√7)+√7
<=>B√2=√(8-2√7)-√(8+2√7)+2√7
<=>B√2=√(√7-1)^2-√(√7+1)^2+2√7
<=>B√2=√7-1-√7-1+2√7
<=>B√2=2√7-2
<=>B=(2√7-2)/√2
=√14-√2
#~Will~be~Pens~3
Câu a) hình như sai đề đúng không bạn ?
b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
Xét \(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
\(=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
\(=8-2\sqrt{16-7}\)
\(=8-2\cdot3\)
\(=2\)
\(\Rightarrow\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=-\sqrt{2}\)( vì \(\sqrt{4-\sqrt{7}}< \sqrt{4+\sqrt{7}}\))
Khi đó : \(B=-\sqrt{2}+\sqrt{7}\)
Góp ý nhẹ với bạn ๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ) là không biết thì đừng làm nhé
1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)
\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)
\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)
\(S^3=\left(\sqrt[3]{7+4\sqrt{3}+}\sqrt[3]{7-4\sqrt{3}}\right)^3\)
= \(7+4\sqrt{3}+7-4\sqrt{3}+3.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}.\left(a+b\right)\)
= 14+\(3.\sqrt{49-48}.S\)
= 14+3S
=> S3-3S=14+3S-3S=14
\(P=S^3-3S\)
\(P=\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)^3-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=7+4\sqrt{3}+3\left(\sqrt[3]{7+4\sqrt{3}}\right)^2.\sqrt[3]{7-4\sqrt{3}}+3.\sqrt[3]{7+4\sqrt{3}}\left(\sqrt[3]{7-4\sqrt{3}}\right)^2+7-4\sqrt{3}\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{7+4\sqrt{3}}.\sqrt[3]{7-4\sqrt{3}}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{49-48}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14\)
Ở onlinemath thì đông người thật nhưng không làm được bài khó
=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )
=> miny ít người nhưng rất hay onl và rất thông minh
thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó
1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)
\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)
\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)
1.
= -(13 + 3 căn7 ) / 2 + -(7 + 3 căn7 ) / 2
= -7 + 3 căn7
\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)
\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)
\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)
\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)
a)
=\(\sqrt{18-2.3\sqrt{2}.1+1}\)
\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)
\(=3\sqrt{2}-1\)
b)
=\(\sqrt{12+2.2\sqrt{3}.3+9}\)
=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)
=\(2\sqrt{3}+3\)
c)
=\(\sqrt{25-2.5.4\sqrt{2}+32}\)
=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)
=\(4\sqrt{2}-5\)
d)
\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)
e)
\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)
g)
\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10
Ta có: \(a+b\sqrt{3}=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow a+b\sqrt{3}=2-\sqrt{3}-2-\sqrt{3}\)
\(\Leftrightarrow a+b\sqrt{3}=-2\sqrt{3}\)
\(\Leftrightarrow a=0;b=-2\)
T=a+b=0+(-2)=-2
\(S=\sqrt{\left(\sqrt{3}\right)^2-2\cdot2\sqrt{3}+2^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot2\cdot\sqrt{3}+2^2}\)
\(S=\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(S=\left|\sqrt{3}-2\right|-\left|\sqrt{3}+2\right|=-\sqrt{3}+2-\sqrt{3}-2=0+\left(-2\right)\sqrt{3}\)
\(a=0,b=-2\)
\(T=0+-2=-2\)