\(x,y,z\ge0\) thỏa mãn \(x+y+z=1\) . CMR
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Ta có: \(x+y+z=1\) nên:

\(\Rightarrow y+z=1-x\)

Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)

\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)

7 tháng 2 2020

cauchy hả ủa mà chế học lớp 9 òi à Phạm Thị Diệu Huyền

14 tháng 8 2017

Áp dụng BĐT AM - GM, ta có:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=4\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

\(\le\frac{\left(x+y+y+z\right)^2}{4}\times4\left(x+z\right)\)

\(=\left(x+2y+z\right)^2\left(x+z\right)\)

\(\le\left(x+2y+z\right)\times\frac{\left(x+2y+z+x+z\right)^2}{4}\)

\(=\left(x+2y+z\right)\times\frac{4\left(x+y+z\right)^2}{4}\)

\(=x+2y+z\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c = \(\frac{1}{3}\)

14 tháng 8 2017

Dấu = xảy ra:\(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

Lời giải:

Vì $x+y+z=1$ và $x,y,z\geq 0$ nên $1-x,1-y,1-z\geq 0$

Ta sử dụng BĐT Cauchy quen thuộc \(ab\leq \frac{(a+b)^2}{4}\) kết hợp với điều kiện $x+y+z=1$ thì có:

\(4(1-x)(1-y)(1-z)=[4(1-x)(1-z)](1-y)\)

\(\leq (1-x+1-z)^2(1-y)=(1+y)^2(1-y)=(1-y^2)(1+y)\leq 1(1+y)\) (do $y^2\geq 0\rightarrow 1-y^2\leq 1$)

hay \(4(1-x)(1-y)(1-z)\leq x+y+z+y=x+2y+z\) (đpcm)

Dấu "=" xảy ra khi $y=0; x=z=0,5$

NV
3 tháng 5 2020

Câu 2:

Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D

\(x^2+y^2+z^2+xyz=4\)

\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)

\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)

Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)

\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)

\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)

\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)

\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)

\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)

NV
3 tháng 5 2020

Câu 1:

\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)

\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)

\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)

\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)

\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)

(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

2 tháng 12 2017

\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)

mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)

\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)

2 tháng 12 2017

Tuyển ơi, m giải cho ai thế

26 tháng 8 2015

Áp dụng bất đẳng thức quen thuộc \(4xy\le\left(x+y\right)^2\), cho ta

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(1-x\right)\left(1-z\right)\cdot\left(1-y\right)\)

\(\le\left(1-x+1-z\right)^2\cdot\left(1-y\right)=\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\)

\(\le1+y=x+2y+z.\)
 

19 tháng 8 2017

Chứng minh $x+2y+z\geq 4(1-x)(1-y)(1-z)$ - Bất đẳng thức và cực trị - Diễn đàn Toán học