Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này làm như sau
Ta có \(x+y+z=6\Rightarrow\left(x+y+z\right)^2=36\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)
\(\Rightarrow2xy+2yz+2zx=36-12=24\left(x^2+y^2+z^2=12\right)\)
\(\Rightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
hay \(x=y=z\Rightarrow x=y=z=\frac{6}{3}=2\)
Vậy \(A=3\)
\(\)
Bài làm:
Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
và
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\)
\(=2\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Từ đó thay vào P rút ra:
\(P=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{2020}{2}=1010\)
Vậy P = 1010
tính gia trị biểu thức
A=\(\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)
Ta có x3 - y3 + z3 + 3xyz
= (x - y)3 + 3xy(x - y) + z3 + 3xyz
= [(x - y)3 + z3] + [3xy(x - y) + 3xyz]
= (x - y + z)[(x - y)2 - (x - y)z + z2] + 3xy(x - y + z)
= (x - y + z)[x2 - 2xy + y2 - xz + yz + z2] + 3xy(x - y + z)
= (x - y + z)(x2 + y2 + z2 + xy - xz + yz)
= 2(x2 + y2 + z2 + xy - xz + yz) (vì x - y+ z = 2)
Lại có (x + y)2 + (y + z)2 + (z - x)2
= x2 + 2xy + y2 + y2 + 2yz + z2 + z2 - 2xz + z2
= 2x2 + 2y2 + 2z2 + 2xy + 2yz - 2xz
= 2(x2 + y2 + z2 + xy - xz + yz)
Khi đó P = \(\frac{2\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy-xz+yz\right)}=1\)