Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)
Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)
\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)
\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)
Áp dụng bđt Cauchy - Schwarz ta có
\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)
\(\le\left(x+y\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)
Lại có
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)
\(\Rightarrow x+y\le2\left(3\right)\)
Từ (1),(2),(3) => đpcm
Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh
(Nhưng hơi dài và khó hiểu nên mình k làm )
Học tốt!!!!!!!!!
Lời giải:
Áp dụng BĐT AM-GM:
\(x^2+y^3\geq x^3+y^4\)
\(\Rightarrow x^2+y^2+y^3\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}=x^3+2y^3\)
\(\Rightarrow x^2+y^2\geq x^3+y^3(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x+y^2)(x^2+y^3)\geq (x+y^2)(x^3+y^4)\geq (x^2+y^3)^2\)
\(\Rightarrow x+y^2\geq x^2+y^3\)
\(\Rightarrow x+y+y^2\geq x^2+y^3+y\geq x^2+2\sqrt{y^4}=x^2+2y^2\) (AM-GM)
\(\Rightarrow x+y\geq x^2+y^2\) (2)
Lại áp dụng BĐT AM-GM:
\(x^2+y^2\geq \frac{(x+y)^2}{2}\) . Suy ra \(x+y\geq x^2+y^2\geq \frac{(x+y)^2}{2}\)
\(\Rightarrow 1\geq \frac{x+y}{2}\Rightarrow x+y\leq 2(3)\)
Từ $(1),(2),(3)$ suy ra \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\)
Dấu bằng xảy ra khi $x=y=1$
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Ta có: \(\left(y^2-y\right)+2\ge0\Rightarrow2y^3\le y^4+y^2\)
\(\Rightarrow\left(x^3+y^2\right)+\left(x^2+y^3\right)\le\left(x^2+y^2\right)+\left(y^4+x^3\right)\)
Mà \(x^3+y^4\le x^2+y^3\)
\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)
Lại có: \(x\left(x-1\right)^2\ge0;y\left(y+1\right)\left(y-1\right)^2\ge0\)
\(\Rightarrow x\left(x-1\right)^2+y\left(y+1\right)\left(y-1\right)^2\ge0\)
\(\Rightarrow x^3-2x^2+x+y^4-y^3-y^2+y\ge0\)
\(\Rightarrow\left(x^2+y^2\right)+\left(x^2+y^3\right)\le\left(x+y\right)+\left(x^3+y^4\right)\)
Mà \(x^2+y^3\ge x^3+y^4\)
\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)
Và \(\left(x+1\right)\left(x-1\right)\ge0;\left(y-1\right)\left(y^3-1\right)\ge0\)
\(x^3-x^2-x+1+y^4-y-y^3+1\ge0\)
\(\Rightarrow\left(x+y\right)+\left(x^2+y^3\right)\le2+\left(x^3+y^4\right)\)
Mà \(x^2+y^3\ge x^3+y^4\)
\(\Rightarrow x+y\le2\left(3\right)\)
Từ (1), (2), (3) => đpcm
Áp dụng BĐT Bunhiacopxky:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)
\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\) \(\left(1\right)\)
Áp dụng BĐT AM-GM:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)
\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)
\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)
Áp dụng bất đẳng thức Cô si cho ba số dương ta có
x^3+x^3+1\ge3\sqrt[3]{x^3.x^3.1}\Leftrightarrow2x^3+1\ge3x^2x3+x3+1≥33x3.x3.1⇔2x3+1≥3x2, đẳng thức xảy ra khi và chỉ khi x=1x=1.
Tương tự, 2y^3+1\ge3y^22y3+1≥3y2. Cộng theo vế hai bất đẳng thức nhận được ta có
2\left(x^3+y^3\right)+2\ge3\left(x^2+y^2\right)2(x3+y3)+2≥3(x2+y2)
Sử dụng giả thiết x^3+y^3=2x3+y3=2 suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi x=y=1x=y=