Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn phân tích các đa thức \(\left(x+\dfrac{1}{x}\right)^n\) (n là số mũ của \(x\) và \(\dfrac{1}{x}\)), sau đó trừ cho đa thức gốc để ra nhé.
a, Ta có:
\(A=x^2+\dfrac{1}{x^2}\\ =\left(x+\dfrac{1}{x}\right)^2-2\cdot x\cdot\dfrac{1}{x}\\ =3^2-2=7\)
Vậy \(A=7\)
Tương tự, ta có:
b, \(B=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)\\=3^3-3\cdot3=18 \)
c, \(C=x^4+\dfrac{1}{x^4}=\left(x+\dfrac{1}{x}\right)^4-4x\cdot\dfrac{1}{x}\left(x+\dfrac{1}{x}\right)^2\\ =3^4-4\cdot3^2=55\)
d, \(D=x^5+\dfrac{1}{x^5}=\left(x+\dfrac{1}{x}\right)^5-5x\cdot\dfrac{1}{x}\left(x^3+x+\dfrac{1}{x}+\dfrac{1}{x^3}\right)\\ =3^5-5\left(18+3\right)\\ =138\) (bạn nhớ áp dụng phần b để làm nhé.)
Chúc bạn học tốt nha
mk nghỉ bài này đề sai
a) điều kiện : \(x\ne0;x\ne-1;x\ne2\)
ta có : \(A=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x-x^2-1}+\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
\(\Leftrightarrow A=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{2}{x+1}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{x+1+x+1+2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{2x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2-x+1}{x\left(x-2\right)}\) \(\Leftrightarrow A=1+\dfrac{2x^2+4}{x\left(x+1\right)\left(x-2\right)}=\dfrac{2x^2+4+x\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)\(\Leftrightarrow A=\dfrac{x^3+x^2-2x+4}{x\left(x+1\right)\left(x-2\right)}\)
b) ta có : \(\left|x-\dfrac{3}{4}\right|=\dfrac{5}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{5}{4}\\x-\dfrac{3}{4}=\dfrac{-5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=\dfrac{-1}{2}\end{matrix}\right.\)
thế vào \(A\) ta có : \(A=\dfrac{41}{5}\)
vậy ...............................................................................................................
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
a. \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{9}{x^2-9}\) (ĐKXĐ: \(x\ne\pm3\))
\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=9\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=9\)
\(\Leftrightarrow12x=9\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
\(\Rightarrow S=\left\{\dfrac{3}{4}\right\}\)
b. \(\dfrac{x+2}{4}-x+3=\dfrac{1-x}{8}\)
\(\Leftrightarrow2\left(x+2\right)-8\left(x-3\right)=1-x\)
\(\Leftrightarrow2x+4-8x+24=1-x\)
\(\Leftrightarrow2x-8x+x=1-4-24\)
\(\Leftrightarrow-3x=-27\Leftrightarrow x=9\)
\(\Rightarrow S=\left\{9\right\}\)
-Mệt -.-
B3;a,ĐKXĐ:\(x\ne\pm4\)
A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)
a) ta có \(x+\dfrac{1}{x}=a\Leftrightarrow x^2+\dfrac{1}{x^2}+2=a^2\Leftrightarrow\dfrac{1}{x^2}+x^2=a^2-2\)
b)ta có \(x+\dfrac{1}{x}=a\Leftrightarrow x^3+3x^2.\dfrac{1}{x}+3x\dfrac{1}{x^2}+\dfrac{1}{x^3}=a^3\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=a^3-3x-3\dfrac{1}{x}=a^3-3a\)