K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

Ta có: x^2 +y^2+z^2=xy+yz+zx

       =>2(x^2 +y^2+z^2)=2(xy+yz+zx)

       =>2x^2+2y^2+2z^2=2xy+2yz+2zx

       =>x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2=0

       =>(x-y)^2+(y-z)^2+(z-x)^2=0

       =>(x-y)^2=(y-z)^2=(z-x)^2=0

       =>x=y=z

 

 

 

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

15 tháng 8 2018

undefined

15 tháng 8 2018

Để khi trừ ra thì có tổng của ba cái bình phương, nên mình mới chứng minh đc

2 tháng 4 2020

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\left(a;b;c>0\right)\)\(p=a+b+c;q=ab+bc+ca;r=abc\)

Thì \(a^2+b^2+c^2+2=a^2b^2c^2\Leftrightarrow p^2-4q+2=r^2-2q\)

Cần chứng minh: \(a^2+b^2+c^2+6\ge2\left(ab+bc+ca\right)\Leftrightarrow p^2-2q+6\ge2q\)

Nếu \(q\le6\): Có \(p^2\ge3q\) nên ta chứng minh \(q+6\ge2q\Leftrightarrow q\le6\) (đúng)

Nếu \(q>6\) mình chưa nghĩ ra.

@Akai Haruma cô có cách nào khác hoặc cách nào cho trường hợp q > 6 không cô?

NV
2 tháng 4 2020

\(x+y+z+2=xyz\)

\(\Leftrightarrow2x+2y+2z+xy+yz+zx+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

\(\Leftrightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2\)

\(\Rightarrow2=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z+3}\)

\(\Leftrightarrow2x+2y+2z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

\(\Leftrightarrow2x+2y+2z+6\ge x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)

\(\Leftrightarrow x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Dấu "=" xảy ra khi \(x=y=z=2\)

15 tháng 8 2018

Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2.\)

<=>        \(x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2=0\)

<=>         \(2xy+2xz+2yz=0\)

<=>          \(2.\left(xy+xz+yz\right)=0\)

<=>           \(xy+xz+yz=0\)

Vậy_

15 tháng 8 2018

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+xz+yz\right)=x^2+y^2+z^2\)

\(\Leftrightarrow2\left(xy+xz+yz\right)=0\)

\(xy+xz+yz=0\left(đpcm\right)\)

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8