Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+2/3+3/4+4/5+5/6+6/7+7/8+8/9+9/10x9/10
=9/10x(1/2+2/3)+(3/4+4/5)+(5/6+6/7)+(7/8+8/9)
=9/10x(1/3+3/5+5/7+7/9)
9/10x(1/3+3/5)+(5/7+7/9)
=9/10x1/5+5/9
9/50+5/9
=10
Bn Long làm đúng rồi bn nguyễn kim arica cứ làm theo cách đó là được .
Bn nào thấy đúng thì ủng hộ nha .
\(S=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.\frac{9}{10}\)
\(S=\frac{1}{10}\)
học tốt
S=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{9}{10}\)
S=\(\frac{1.2.3....9}{2.3.4...10}=\frac{1}{10}\)
Vậy S=\(\frac{1}{10}\)
a= 1/2 + 1/4 + 1/8 - 1 x 1 + 8/1 - 4/1 - 2/1=\(1\frac{7}{8}\)=1,875
b=3/1 - 6/3 - 9/6 - 369/1 : 1/3 + 3/6 + 6/9 - 1/963 \(\approx\)186,665628245067
c=1/1 - 1/2 + 3/1 - 1/4 + 5/1 - 1/6 + 7/1 - 1/8 + 9/1 - 1/10=\(\approx\)23,8583333333333
vậy a>b>c
**************************l i k e***********************************8
A = \(\left(-\frac{1}{8}\right)\times\left(-13\right)=\frac{13}{8}\) => 0 < A < 2
B: Tử âm ; mẫu dương => B < 0
C = \(\left(\frac{1}{1}+\frac{3}{1}+\frac{5}{1}+\frac{7}{1}+\frac{9}{1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
= 25 \(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
Dễ có: B < A < C
a)\(\frac{11^4.6-11^5}{11^4-11^5}:\frac{9^8.3-9^9}{9^8.5+9^8.7}\)
\(=1.6:\frac{9^8.3-9^8.9}{9^8.\left(5+7\right)}\)
\(=6:\frac{9^8.\left(3-9\right)}{9^8.12}\)
\(=6:\frac{9^8.\left(-6\right)}{9^8.12}\)
\(=6:\left(-\frac{6}{12}\right)\)
\(=6:\left(-\frac{1}{2}\right)\)
\(=-12\)
b) 3/5 : ( -1/5-1/6)+3/5:(-1/3-16/15) ( mình chuyển về ps luôn )
=3/5: (-11/30) + 3/5 : (-7/5)
=3/5:[-11/30+(-7/5)]
=3/5:53/30
=18/53
c) (1/2-13/14):5/7-(-2/21+1/7):5/7
= -3/7:5/7-1/21:5/7
=(-3/7-1/21):5/7
=-10/21:5/7
=-2/3
câu b vá c mình làm tắt nha. chúc bạn học tốt
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
Ta có:
1 = \(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+............+\frac{1}{10}\)(10 phân số \(\frac{1}{10}\))
Mà \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};............;\frac{9}{10}>10\)
\(\Rightarrow M>1\)
Vậy M > 1
Ta có:
1/2=0,5
2/3>0,6
<=>1/2+2/3>1,1>1
<=>1/2+2/3+3/4+...+9/10>1