Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{c}=\frac{c}{b}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
b) \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow ab=c^2\)
\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-ab+ab-a^2}{a^2+ab}=\frac{\left(b-a\right)b+\left(b-a\right)a}{a.\left(a+b\right)}=\frac{\left(b-a\right)\left(b+a\right)}{a.\left(a+b\right)}=\frac{b-a}{a}\)
CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)
THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)
Câu 1:
Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\)
=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)
Câu 2:
Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)
=>\(ab=c^2\)
Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)
\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)
=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)
MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!
k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều.
Có: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
=> \(\frac{b^2+c^2}{a^2+c^2}=\frac{b}{a}\)
=> \(\frac{b^2+c^2}{a^2+c^2}-1=\frac{b}{a}-1\)
=> \(\frac{b^2+c^2}{a^2+c^2}-\frac{a^2+c^2}{a^2+c^2}=\frac{b}{a}-\frac{a}{a}\)
=> \(\frac{\left(b^2+c^2\right)-\left(a^2+c^2\right)}{a^2+c^2}=\frac{b-a}{a}\)
=> \(\frac{b^2+c^2-a^2-c^2}{a^2+c^2}=\frac{b-a}{a}\)
=> \(\frac{b^2-a^2+\left(c^2-c^2\right)}{a^2+c^2}=\frac{b-a}{a}\)
=> \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)(điều phải chứng minh)
\(\frac{a}{c}\) = \(\frac{c}{b}\) => c2 = ab
=> \(\frac{a^2+c^2}{b^2+c^2}\) = \(\frac{a^2+ab}{b^2+ab}\) = \(\frac{a.\left(a+b\right)}{b.\left(a+b\right)}\) = \(\frac{a}{b}\)
=> \(\frac{a^2+c^2}{b^2+c^2}\) = \(\frac{a}{b}\)
Có : \(\frac{a}{c}=\frac{c}{b}=>ab=c^2\)
Lại có : \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a.(a+b)}{b.(a+b)}=\frac{a}{b}\) ( đpcm )
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)
\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)
Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
\(\Rightarrow\frac{a^2+b^2}{c^2+b^2}=\frac{a^2}{c^2}=\frac{a^2}{ab}=\frac{a}{b}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)
Theo đề ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-a^2}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(đpmc\right)\)