K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(T/C...)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

b)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(T/C...)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

18 tháng 12 2016

c)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)

\(\Rightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

10 tháng 12 2019

Đặt  \(\frac{a}{b}=\frac{c}{d}\)

=> a = bk ;  c = dk

Ta có: \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=9\left(\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)   ( 1 ) 

Lại có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{bk^2+b^2}{dk^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)  ( 2 )

Từ ( 1 ) và ( 2 ) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2\cdot k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Do đó: VT=VP(đpcm)

 

12 tháng 8 2016

bạn ơi viết phân số như bạn thế nào rồi mk giải cho

3 tháng 9 2017

Nguyễn Thị Thu Huyền ơi , viết phân số = dấu / 

Đọc lại lý thuyết Bài 8 sgk/28

chỉ cần có lý thuyết a=k.b và c=k.d thay vào biểu thức là xong

8 tháng 11 2017

      Đặt \(\frac{a}{b}=\frac{c}{d}\)= k

\(\Rightarrow\)a=bk , c = dk

Ta có:

  • \(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\) (1)

  \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)

Từ (1) và (2) suy ra \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

vậy \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

8 tháng 11 2017

nhớ giải chi tiết giúp mình nhé ai nhanh và đúng nhất mình sẽ tích cho

2 tháng 11 2017

b) Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=kb\\\frac{c}{d}=k\Rightarrow c=kd\end{cases}}\)

VT : \(\frac{5a+3b}{5a-3b}\Rightarrow\frac{5kb+3b}{5ka-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (1)

VP : \(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (2)

Từ (1) và (2) => đpcm

16 tháng 11 2017

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

\(=\frac{11a^2}{11c^2}=\frac{7a^2}{7c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

17 tháng 8 2019

Ta có: a/b=c/d => a2/d2=>a2/c2=b2/d2=ab/cd

=11a2/11c2=7a2/7c2=8b2/8d2=3ab/3cd=7a2+3ab/7c2+3cd=11a2-8b2/11c2-8d2

=>7a2+3ab/11a2-8b2=7c2+3cd/11c2-8d2