\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)( a + b + c + d khác 0 )

Tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Áp dụng tính chất của dãy tỉ số bằng nhau vao A ,ta dc :

  A = (2011a - 2010b + 2011b - 2010c + 2011c - 2010d + 2011d - 2010a) / (c + d + a + d + a + b + b + c)

  A = (a + b + c + d) / (2a + 2b + 2c + 2d) 

Ta có

 a/2b = b/2c = c/2d = d/2a = (a + b + c + d) / (2a + 2b + 2c + 2d) 

Vay : A = a/2b = b/2c = c/2d = d/2a

5 tháng 3 2017

nhưng bạn ch ra kết quả :)

29 tháng 8 2016

bacd=dacb vay ...

10 tháng 12 2016

tự làm đi cái này không khó 

12 tháng 10 2016

CÁC BẠN GIẢI DÙM VỚI. NĂN NỈ ĐÓ

24 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)\(a+b+c\ne0\) và \(a;b;c\ne0\)vì là mẫu của phân số )

\(\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{a}=1\Rightarrow c=a\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^{49}.b^{51}}{c^{100}}=\frac{a^{49}.a^{51}}{a^{100}}=\frac{a^{100}}{a^{100}}=1\)

17 tháng 10 2019

\(^{2^{25}}\) là \(2^{25}\) mé các bạn, mình sợ mọi người nhầm

17 tháng 10 2019

Đợi tí nha bạn Phạm Mai Linh

21 tháng 7 2016

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

=>3a=b+c+d

    3b=a+c+d

    3c=a+b+d

    3d=a+b+c

=>a=b=c=d

=>\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

21 tháng 7 2016

4

4 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\\\frac{c}{a}=1\Rightarrow c=a\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{a^{2016}}{a^{2016}}=1\)

4 tháng 11 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

\(M=\frac{a^3.b^2.c^{2011}}{b^{2016}}=\frac{b^{2011+3+2}}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)

9 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)

Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)

Từ (1) và (2) => ĐPCM

b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => ĐPCM

12 tháng 11 2018

đi mà làm